【Diffusion实战】基于Stable Diffusion实现文本到图像的生成(Pytorch代码详解)




import torch
from PIL import Image
from torchvision.transforms import functional as F
from diffusers import StableDiffusionPipeline
 
# 加载Stable Diffusion模型
pipe = StableDiffusionPipeline.from_pretrained("StableDiffusionPipeline", "stable-diffusion-v1")
 
# 设置生成图像的文本提示
prompt = "一个笑得出汗的小男孩正在向摄影机笑笑"
 
# 编码文本提示
prompt_tokens = pipe.encode_text(prompt)
 
# 设置图像尺寸
image_size = pipe.model.config.image_size
 
# 创建一个空的图像张量,初始化为高斯分布
guidance_tokens, guidance_bboxes = pipe.p_sample_cond_from_prompt(
    prompt_tokens,
    skip_dequantize=True,  # 直接返回量化的输出
    reconstruct_text=False  # 不重构文本令牌
)
 
# 生成图像
img = pipe.decoder(guidance_tokens, guidance_bboxes)
 
# 如果模型有量化操作,则进行反量化
if hasattr(pipe, 'quantize_scale'):
    img = F.interpolate(img.clone(), size=(image_size, image_size), mode='bicubic')
    img /= pipe.quantize_scale
 
# 将图像张量转换为PIL图像并保存
img = F.to_pil_image(img.squeeze(0).clamp(0, 1).cpu())
img.save("generated_image.png")

这段代码展示了如何使用Pytorch和diffusers库来加载一个预训练的Stable Diffusion模型,并根据提供的文本提示生成图像。首先,我们加载了Stable Diffusion模型,然后将文本提示转换为模型可以理解的令牌。接着,我们使用模型的解码器生成图像,并将生成的图像保存为文件。

none
最后修改于:2024年09月04日 21:55

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日