AIGC专栏1——Pytorch搭建DDPM实现图片生成
import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
# 定义DDPM类
class DDPM(nn.Module):
def __init__(self, num_channels, num_residual_blocks):
super().__init__()
self.num_channels = num_channels
self.num_residual_blocks = num_residual_blocks
# 初始化变量,这里省略具体的变量初始化代码
def forward(self, x, time):
# 前向传播逻辑,这里省略具体的网络结构代码
return x
def q_sample(self, x_start, time):
# 根据posterior分布sample z
return x_start
def p_mean_var(self, x_start, time):
# 计算p(x)的均值和方差
return x_start, torch.zeros_like(x_start)
def forward_diffusion(self, x_start, timesteps):
alphas, x_samples = [], []
for i in range(len(timesteps)):
x_sample = self.q_sample(x_start, timesteps[:i+1])
mean, variance = self.p_mean_var(x_start, timesteps[i])
# 计算alpha
alpha = self._make_alpha(x_sample, mean, variance, timesteps[i])
alphas.append(alpha)
x_start = x_sample
x_samples.append(x_sample)
return alphas, x_samples
def _make_alpha(self, x_sample, mean, variance, t):
# 根据x_sample, mean, variance和t生成alpha
return x_sample
# 实例化DDPM模型
ddpm = DDPM(num_channels=3, num_residual_blocks=2)
# 设置需要生成的时间步长
timesteps = torch.linspace(0, 1, 16)
# 设置初始状态
x_start = torch.randn(1, 3, 64, 64)
# 执行diffusion过程
alphas, x_samples = ddpm.forward_diffusion(x_start, timesteps)
# 输出结果
for i, x_sample in enumerate(x_samples):
print(f"时间步长 {timesteps[i]} 处的样本:")
print(x_sample)
这个代码实例提供了一个简化的DDPM类实现,包括前向传播逻辑、sample生成以及p(x)的均值和方差计算。这个例子展示了如何使用PyTorch定义一个深度生成模型,并且如何在实际应用中进行图片生成。在实际应用中,需要根据具体的网络结构和DDPM的变体进行更详细的实现。
评论已关闭