NL2SQL进阶系列:Data-Copilot、Chat2DB、Vanna Text2SQL优化框架开源应用实践详解[Text2SQL]
由于涉及的技术较为复杂,以下仅提供一个简化的示例代码,展示如何使用Data-Copilot进行数据处理和特征工程。
import pandas as pd
from data_copilot.helper import DataCopilotHelper
# 示例数据
data = {
'name': ['Alice', 'Bob', 'Charlie'],
'age': [25, 30, 35],
'city': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
# 创建DataCopilotHelper实例
helper = DataCopilotHelper()
# 使用Data-Copilot进行特征工程
# 例如,我们可以创建一个新的特征,其值为每个人的年龄加10
df['age_plus_10'] = helper.apply(df, lambda x: x['age'] + 10)
# 打印结果
print(df)
这个示例展示了如何使用DataCopilotHelper类来执行简单的数据转换任务,如将一个现有列的值增加一个固定的数值。在实际应用中,Data-Copilot可以用于更复杂的数据处理和特征工程任务,包括数据清洗、转换、合并和聚合等。
评论已关闭