Redis-缓存穿透(布隆过滤器详解)、缓存击穿、缓存雪崩及解决方案

布隆过滤器是一种数据结构,用于检查元素是否可能或者肯定不存在于集合中。布隆过滤器可以有效地解决缓存穿透问题,它可以在数据库之前就判断一个请求的数据一定不存在,从而避免查询数据库,减少数据库压力。

解决方案:

  1. 使用布隆过滤器:在缓存之前加一层布隆过滤器,当请求过来时,先通过布隆过滤器判断数据是否存在。如果数据不存在,布隆过滤器可以准确地告诉我们数据一定不存在于数据库中,这样就可以直接返回,不用查询数据库,减少数据库压力。

代码示例:




from redis import Redis
from bloom_filter import BloomFilter
 
# 假设已经有了布隆过滤器的实例
bf = BloomFilter(size=1000000, hash_count=8)
 
def get_data(data_id):
    # 先判断数据是否可能存在
    if data_id not in bf:
        return None
    
    # 如果可能存在,再从Redis缓存中查询
    data = redis_conn.get(data_id)
    if data is None:
        # 缓存未命中,可能数据不存在,更新布隆过滤器
        bf.add(data_id)
    return data
  1. 缓存空对象:当数据库查询结果为空时,也将空对象缓存到Redis中,并设置一个较短的过期时间。这样,在接下来的一段时间内,相同的查询请求就可以直接从缓存中返回,而不会打到数据库。

代码示例:




def get_data(data_id):
    data = redis_conn.get(data_id)
    if data is None:
        # 缓存未命中,查询数据库
        data = db_conn.get(data_id)
        if data is None:
            # 数据库查询结果为空,缓存一个空对象
            redis_conn.setex(data_id, 300, 'null')
        else:
            # 数据库查询结果非空,缓存结果
            redis_conn.setex(data_id, 3600, data)
    return data
  1. 使用锁或者队列:当并发请求非常高,且大部分请求都打到数据库时,可以使用分布式锁或者队列来控制数据库的访问。

代码示例:




from redis import Redis
from threading import Lock
 
lock = Lock()
 
def get_data(data_id):
    data = redis_conn.get(data_id)
    if data is None:
        with lock:
            data = redis_conn.get(data_id)
            if data is None:
                # 查询数据库
                data = db_conn.get(data_id)
                if data is not None:
                    # 缓存结果
                    redis_conn.setex(data_id, 3600, data)
                else:
                    # 数据库查询结果为空,缓存一个空对象
                    redis_conn.setex(data_id, 300, 'null')
    return data

缓存击穿、雪崩的解决方案:

  1. 热点数据永不过期:对于经常被访问的数据,可以设置一个很长的过期时间,避免缓存失效造成的击穿问题。
  2. 随机过期时间:设置缓存时,不要所有的缓存item都设置相
最后修改于:2024年09月04日 10:10

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日