python 层次分析(AHP)

warning: 这篇文章距离上次修改已过203天,其中的内容可能已经有所变动。

层次分析法(AHP)是一种决策分析方法,被广泛应用于多目标决策问题。在Python中,可以使用scipy.optimize模块中的scipy.optimize.linear_sum_assignment函数来实现AHP。

以下是一个简单的Python AHP示例:




import numpy as np
from scipy.optimize import linear_sum_assignment
 
def AHP(matrix):
    """
    执行层次分析法
    :param matrix: 相互比较矩阵
    :return: 各级权重
    """
    # 计算标准化矩阵
    n = matrix.shape[0]
    total = matrix.sum(axis=0)
    standardized_matrix = matrix / total.reshape(n, 1)
 
    # 计算一致性检验
    col_sums = standardized_matrix.sum(axis=1)
    expected = np.ones((n, n)) / n
    criterion = standardized_matrix.sum() - np.trace(standardized_matrix)
    relative_error = criterion / np.trace(standardized_matrix)
 
    # 最优分配
    row_ind, col_ind = linear_sum_assignment(-standardized_matrix)
    optimal_solution = np.array([standardized_matrix[row_ind[i], col_ind[i]] for i in range(len(row_ind))])
 
    return optimal_solution, relative_error, criterion
 
# 示例使用
matrix = np.array([
    [9, 2, 5, 6],
    [2, 5, 6, 3],
    [5, 6, 3, 8],
    [6, 3, 8, 4]
])
 
weights, relative_error, criterion = AHP(matrix)
print(f"优化后的权重:{weights}\n一致性检验相对错误:{relative_error}\n最优分配标准化矩阵:{weights}")

在这个例子中,我们定义了一个AHP函数,它接受一个相互比较矩阵作为输入,执行层次分析法,并返回各级的权重以及一致性检验的结果。

请注意,这只是一个简化示例,实际应用中可能需要额外的处理,例如处理缺失数据、控制循环依赖、处理非正式矩阵等。

最后修改于:2024年08月09日 12:35

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日