Redis第10讲——Redis数据分片的三种算法

Redis Cluster通过哈希槽(hash slot)来实现数据分片,一共有16384个哈希槽。Redis Cluster采用的是哈希标签的方式来分配这些槽。这里我们主要讨论三种数据分片的方法:

  1. 哈希取模:这是最简单的方式,我们可以通过对键的哈希值进行取模运算来决定键应该分配到哪个节点。但是这种方式在添加或删除节点时,会导致大量的数据迁移。
  2. 一致性哈希:一致性哈希可以很好地解决数据迁移的问题。在添加或删除节点时,只会影响到相邻的节点,这个影响范围被称为“环”。
  3. 哈希槽:Redis Cluster采用的就是这种方式,它将16384个哈希槽均匀分布到各个节点上,并且每个键都属于这16384个槽的其中一个。

以下是一个简单的Python示例,展示了如何使用哈希槽的方式来分配数据:




import redis
 
class RedisSharder:
    def __init__(self, nodes):
        self.nodes = nodes
        self.redis_nodes = {str(i): redis.StrictRedis(host=node[0], port=node[1], db=0) 
                             for i, node in enumerate(nodes)}
 
    def key_to_node(self, key):
        """计算键属于哪个节点"""
        hash_slot = hash(key) % 16384
        node_index = hash_slot % len(self.nodes)
        return self.redis_nodes[str(node_index)]
 
    def set(self, key, value):
        node = self.key_to_node(key)
        node.set(key, value)
 
    def get(self, key):
        node = self.key_to_node(key)
        return node.get(key)
 
# 使用示例
nodes = [('127.0.0.1', 6379), ('127.0.0.1', 6380), ('127.0.0.1', 6381)]
sharder = RedisSharder(nodes)
 
sharder.set('key1', 'value1')
sharder.set('key2', 'value2')
sharder.set('key3', 'value3')
 
print(sharder.get('key1'))
print(sharder.get('key2'))
print(sharder.get('key3'))

在这个例子中,我们定义了一个RedisSharder类,它接收一个节点列表,并为每个节点创建一个Redis连接。我们通过对键的哈希值取模16384来决定它属于哪个哈希槽,然后通过对哈希槽数量取模节点数量来决定它应该存储在哪个节点上。我们实现了set和get方法来模拟数据写入和读取的过程。这个例子展示了如何使用哈希槽算法来简单地实现Redis数据分片。

最后修改于:2024年09月04日 08:51

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日