在autodl平台使用llama-factory微调Qwen1.5-7B

在AutoDL平台使用llama-factory微调Qwen1.5-7B模型,您需要遵循以下步骤:

  1. 安装llama-factory库:



pip install llama-factory
  1. 准备微调数据集,确保其格式符合llama-factory要求。
  2. 使用llama-factory进行微调,以下是一个简单的微调示例:



import llama_factory
from transformers import AutoTokenizer, AutoModel
 
# 加载1.5T Qwen模型
tokenizer = AutoTokenizer.from_pretrained("llama-gen-7b-hf")
model = AutoModel.from_pretrained("llama-gen-7b-hf").half().cuda()
 
# 定义微调参数
train_dataset = "path_to_your_train_dataset"
valid_dataset = "path_to_your_valid_dataset"
 
# 微调模型
llama = llama_factory.LLAMAFactory(
    model=model,
    tokenizer=tokenizer,
    train_dataset=train_dataset,
    valid_dataset=valid_dataset,
    batch_size=1,  # 根据您的GPU内存进行调整
    learning_rate=1e-5,
    num_train_epochs=1,  # 根据数据集大小调整
    save_steps=10000,
    save_total_limit=2,
    gradient_accumulation_steps=16,  # 根据您的GPU核心数调整
    fp16=True,
    use_multiprocessing=True,
    num_workers=4,  # 根据您的CPU核心数调整
)
 
# 开始微调
llama.train()
 
# 保存微调后的模型
llama.save_model("path_to_save_model")

请确保替换path_to_your_train_datasetpath_to_your_valid_datasetpath_to_save_model为您的数据集路径和保存路径。微调参数(批次大小、学习率、训练轮数等)应根据您的具体情况进行调整。

注意:以上代码示例假设您已经有了一个合适的数据集,并且该数据集与llama-factory的要求相匹配。您需要根据自己的数据集结构和格式相应地调整数据集加载过程。

none
最后修改于:2024年09月03日 18:02

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日