使用LangChain和Llama-Index实现多重检索RAG




from langchain.llms import LlamaIndex
from langchain.chains import RetrievalQA
from langchain.document_loaders import MarkdownLoader
from langchain.vectorstores import VectorStore
 
# 创建LlamaIndex
llama_index = LlamaIndex(model_name="tiktoker/rag-llama-7b-int4")
 
# 创建MarkdownLoader来加载文档
loader = MarkdownLoader()
 
# 加载文档
documents = loader.load_from_file("documents.md")
 
# 将文档添加到LlamaIndex中
llama_index.add_documents(documents)
 
# 创建一个基于LlamaIndex的VectorStore
vectorstore = VectorStore.from_llm(llama_index)
 
# 创建多重检索问答链
qa_chain = RetrievalQA(
    vectorstore=vectorstore,
    retriever_options={"k": 10},
    reader_options={"top_p": 0.95, "max_length": 500},
)
 
# 设置用户查询
query = "请解释RAG模型的工作原理。"
 
# 执行查询并获取结果
result = qa_chain.run(query)
print(result)

这段代码展示了如何使用LangChain和LlamaIndex创建一个简单的多重检索RAG模型问答系统。首先,我们创建了一个LlamaIndex,并加载了一些Markdown格式的文档。然后,我们将这些文档添加到LlamaIndex中,并使用它来初始化一个VectorStore。最后,我们创建了一个RetrievalQA对象,并设置了一些参数,如k-nearest neighbors的数量、生成文本的顶部概率和最大长度。用户提交一个查询,系统会根据RAG模型的知识来回答问题。

AI
最后修改于:2024年09月02日 18:06

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日