Python multi level feedback queue多级反馈队列算法详解及源码

多级反馈队列算法(multi-level feedback queue)是一种用于缓解网络拥塞的流量控制方法。以下是该算法的基本思想和示例代码:

  1. 初始化多个队列,每个队列的发送速率是下一个队列的发送速率的两倍。
  2. 当数据包进入网络时,它被放入第一个队列。
  3. 如果第一个队列满了,数据包就进入下一级队列。
  4. 如果所有队列都满,数据包会被丢弃。

示例代码:




class MFBQ:
    def __init__(self, levels, max_sizes):
        self.levels = levels  # 队列的级别
        self.max_sizes = max_sizes  # 每个队列的最大大小
        self.queues = [[] for _ in range(levels)]  # 初始化队列列表
 
    def enqueue(self, packet, level):
        if level < self.levels and len(self.queues[level]) < self.max_sizes[level]:
            self.queues[level].append(packet)
            return True
        else:
            return self.enqueue(packet, level+1) if level+1 < self.levels else False
 
    def dequeue(self, level):
        if level < self.levels and self.queues[level]:
            return self.queues[level].pop(0)
        return None
 
# 使用示例
mfbq = MFBQ(3, [10, 20, 40])  # 3级队列,每级限制大小分别为10, 20, 40
 
# 尝试添加数据包
for i in range(50):
    packet = "Packet " + str(i)
    if mfbq.enqueue(packet, 0):
        print(f"Packet {packet} added successfully.")
    else:
        print(f"Failed to add packet {packet}.")
 
# 尝试移除数据包
for level in range(mfbq.levels):
    while mfbq.dequeue(level) is not None:
        print(f"Packet dequeued: {packet}")

这个示例代码定义了一个MFBQ类,它有两个主要方法:enqueue用于将数据包添加到适当的队列中,dequeue用于从队列中移除数据包。初始化时需要指定队列的级别和每级队列的最大大小。如果一个队列满了,数据包会自动进入下一个队列。如果所有队列都满,数据包会被丢弃。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日