实时数仓之Flink实现版本维表数据的Redis全局缓存
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.common.state.{BroadcastState, MapStateDescriptor}
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
object RedisBroadcastCache {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val dataStream = env.fromElements(("a", 1), ("b", 2))
val broadcastStream = env.fromElements("a", "b")
val mapStateDescriptor = new MapStateDescriptor[String, String]("BroadcastState", classOf[String], classOf[String])
dataStream
.keyBy(_._1)
.connect(broadcastStream.broadcast(mapStateDescriptor))
.process(new BroadcastProcessFunction[String, (String, Int), String] {
override def processElement(value: (String, Int), ctx: BroadcastProcessFunction[String, (String, Int), String]#ReadOnlyContext, out: Collector[String]): Unit = {
// 获取广播状态
val broadcastState: BroadcastState[String, String] = ctx.getBroadcastState(mapStateDescriptor)
// 从Redis获取数据并更新到广播状态
val dataFromRedis = getDataFromRedis(broadcastState.get(value._1))
broadcastState.put(value._1, dataFromRedis)
// 处理业务逻辑
out.collect(s"${value._1} -> ${dataFromRedis}")
}
override def processBroadcastElement(value: String, ctx: BroadcastProcessFunction[String, (String, Int), String]#Context, out: Collector[String]): Unit = {
// 当广播数据有更新时,可以在这里实现逻辑
}
// 模拟从Redis获取数据的方法
def getDataFromRedis(key: String): String = {
// 假设这里从Redis获取数据
"version_data"
}
})
.print()
env.execute("Flink Redis Broadcast Cache Example")
}
}
这个代码示例展示了如何在Flink程序中使用BroadcastProcessFunction来处理数据流,并利用广播状态来缓存Redis中的版本数据。在processElement方法中,它从广播状态获取缓存的版本数据,如果不存在,则从模拟的Redis获取数据,并更新到广播状态。这样,后续的数据处理可以复用这些版本数据,从而提高系统的性能。
评论已关闭