实时数仓之Flink实现版本维表数据的Redis全局缓存




import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.api.common.state.{BroadcastState, MapStateDescriptor}
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction
import org.apache.flink.util.Collector
 
object RedisBroadcastCache {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val dataStream = env.fromElements(("a", 1), ("b", 2))
    val broadcastStream = env.fromElements("a", "b")
 
    val mapStateDescriptor = new MapStateDescriptor[String, String]("BroadcastState", classOf[String], classOf[String])
 
    dataStream
      .keyBy(_._1)
      .connect(broadcastStream.broadcast(mapStateDescriptor))
      .process(new BroadcastProcessFunction[String, (String, Int), String] {
        override def processElement(value: (String, Int), ctx: BroadcastProcessFunction[String, (String, Int), String]#ReadOnlyContext, out: Collector[String]): Unit = {
          // 获取广播状态
          val broadcastState: BroadcastState[String, String] = ctx.getBroadcastState(mapStateDescriptor)
          // 从Redis获取数据并更新到广播状态
          val dataFromRedis = getDataFromRedis(broadcastState.get(value._1))
          broadcastState.put(value._1, dataFromRedis)
          // 处理业务逻辑
          out.collect(s"${value._1} -> ${dataFromRedis}")
        }
 
        override def processBroadcastElement(value: String, ctx: BroadcastProcessFunction[String, (String, Int), String]#Context, out: Collector[String]): Unit = {
          // 当广播数据有更新时,可以在这里实现逻辑
        }
 
        // 模拟从Redis获取数据的方法
        def getDataFromRedis(key: String): String = {
          // 假设这里从Redis获取数据
          "version_data"
        }
      })
      .print()
 
    env.execute("Flink Redis Broadcast Cache Example")
  }
}

这个代码示例展示了如何在Flink程序中使用BroadcastProcessFunction来处理数据流,并利用广播状态来缓存Redis中的版本数据。在processElement方法中,它从广播状态获取缓存的版本数据,如果不存在,则从模拟的Redis获取数据,并更新到广播状态。这样,后续的数据处理可以复用这些版本数据,从而提高系统的性能。

最后修改于:2024年09月02日 16:43

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日