使用 Python 和 OpenCV 进行实时目标检测的详解




import cv2
 
# 初始化摄像头和 OpenCV 窗口
cap = cv2.VideoCapture(0)
cv2.namedWindow('Realtime Object Detection', cv2.WINDOW_NORMAL)
 
# 加载预训练的深度学习目标检测模型
net = cv2.dnn.readNet('model_data/yolov3.weights', 'model_data/yolov3.cfg')
 
# 读取分类标签
with open('model_data/coco.names', 'r') as f:
    labels = [line.strip() for line in f.readlines()]
 
# 进行目标检测的循环
while True:
    ret, frame = cap.read()
    if not ret:
        break
    
    # 获取网络输入尺寸
    blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
    
    # 设置网络输入并进行前向传播
    net.setInput(blob)
    outputs = net.forward(net.getUnconnectedOutLayersNames())
    
    # 解析检测结果
    for output in outputs:
        for detection in output:
            # 忽略置信度低的检测结果
            if detection[2] > 0.5:
                # 获取类别索引、置信度、坐标
                class_id = detection[0]
                confidence = detection[2]
                box = detection[3:7] * np.array([frame.shape[1], frame.shape[0], frame.shape[1], frame.shape[0]])
                start_x, start_y, end_x, end_y = box.astype(np.int)
                
                # 绘制矩形框和标签
                cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), (255, 0, 0), 2)
                cv2.putText(frame, f"{labels[class_id]}: {confidence * 100:.2f}%", (start_x, start_y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
    
    # 显示结果
    cv2.imshow('Realtime Object Detection', frame)
    
    # 按 'q' 退出循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
 
# 释放摄像头资源并关闭所有窗口
cap.release()
cv2.destroyAllWindows()

这段代码使用了OpenCV的深度学习模块来进行实时目标检测。首先,它初始化了摄像头和OpenCV窗口,然后加载了预训练好的YOLOv3模型和相关的配置文件。接着,它在一个循环中不断地从摄像头中读取帧,并通过YOLOv3模型进行目标检测。检测结果会被绘制在帧上,并且在窗口中实时显示。用户可以通过按'q'键退出程序。

最后修改于:2024年08月26日 12:11

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日