Elasticsearch向量数据存储与搜索
在Elasticsearch中,向量搜索是一种高级特性,允许你存储和搜索数值型向量。以下是一个使用Elasticsearch Java API进行向量搜索的简单示例:
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.VectorQueryBuilder;
import org.elasticsearch.index.query.MatchQueryBuilder;
import org.elasticsearch.search.fetch.subphase.FetchSourceContext;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.common.unit.Fuzziness;
import java.io.IOException;
import java.util.Arrays;
public class VectorSearchExample {
public static void main(String[] args) throws IOException {
// 假设你已经有了一个配置好的RestHighLevelClient实例client
RestHighLevelClient client = new RestHighLevelClient(...);
// 创建一个向量查询
VectorQueryBuilder vectorQuery = VectorQueryBuilder.of("vector_field")
.setQuery("vector_to_search", new float[]{1.5f, 2.5f, 3.5f, 4.5f})
.setMaxScore(10);
// 创建一个匹配查询
MatchQueryBuilder matchQuery = QueryBuilders.matchQuery("other_field", "value_to_find");
// 创建搜索请求
SearchRequest searchRequest = new SearchRequest("index_name");
// 构建搜索源
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(vectorQuery).query(matchQuery); // 可以添加多个查询
searchSourceBuilder.fetchSource(new String[]{"other_field"}, new String[]{}); // 设置需要获取的字段
searchSourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); // 设置超时时间
searchRequest.source(searchSourceBuilder);
// 执行搜索
SearchResponse searchResponse = client.search(searchRequest);
// 处理搜索结果
// ...
// 关闭client
client.close();
}
}
在这个例子中,我们创建了一个向量查询并将其添加到搜索源中。我们还添加了一个匹配查询来进一步缩小搜索范围。最后
评论已关闭