使 Elasticsearch 和 Lucene 成为最佳向量数据库:速度提高 8 倍,效率提高 32 倍

这个问题描述的是一个关于使用Elasticsearch和Lucene作为向量数据库来优化搜索性能的研究。在这个上下文中,“最佳矢量数据库”可能指的是一个优化的系统,用于存储和搜索高维向量数据,以实现快速相似度搜索。

向量数据库的性能通常通过以下两种主要方式进行优化:

  1. 索引构建:创建一个高效的索引结构来存储向量数据,使得在查询时可以快速找到最相似的向量。
  2. 查询处理:使用高效的查询处理算法来计算查询向量与存储向量之间的相似度。

Elasticsearch 和 Lucene 已经是成熟的向量搜索引擎解决方案。Elasticsearch 在此领域的优势在于它的扩展性和灵活性,可以处理从小型到大型应用的数据。Lucene 是 Elasticsearch 的底层库,负责索引构建和查询处理。

提升速度和效率的具体数据提升可能是由于Elasticsearch和Lucene的更新迭代,或者是使用了特定的优化策略。例如,可能使用了更先进的相似度计算方法,或者在索引构建过程中采用了更有效的数据结构。

在实际应用中,可以通过配置Elasticsearch的相似度计算参数来提升搜索速度和效率。例如,使用 Elasticsearch 提供的 BM25 查询或其他相似度算法来优化搜索结果。

以下是一个简单的Elasticsearch设置向量搜索的例子:




PUT my_vectors
{
  "mappings": {
    "properties": {
      "vector": {
        "type": "dense_vector",
        "dims": 128
      }
    }
  }
}
 
POST my_vectors/_doc/1
{
  "vector": [0.1, 0.2, 0.3, ..., 0.128] 
}
 
POST my_vectors/_search
{
  "size": 10,
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
        "params": {
          "query_vector": [0.5, 0.5, 0.5, ..., 0.5]
        }
      }
    }
  }
}

在这个例子中,我们创建了一个名为 my_vectors 的索引,并定义了一个名为 vector 的属性,用于存储128维的浮点数向量。然后,我们插入了一个向量文档,并执行了一个搜索,使用脚本得分查询来计算查询向量和文档向量之间的余弦相似度。这个查询可以被用来进行实时的向量搜索。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日