【爬虫+数据清洗+数据分析+可视化】用Python进行文本挖掘“狂飙“的评论

warning: 这篇文章距离上次修改已过182天,其中的内容可能已经有所变动。



import pandas as pd
import jieba
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud
 
# 读取数据
df = pd.read_csv('data.csv', encoding='utf-8')
 
# 使用结巴分词
df['word_seg'] = df['comment'].apply(lambda x: ' '.join(jieba.cut(x)))
 
# 创建词频表
word_series = pd.Series(' '.join(df['word_seg']).split())
word_df = word_series.value_counts()[:1000].sort_values(ascending=False).reset_index()
word_df.columns = ['word', 'count']
 
# 词云可视化
cloud_mask = np.array(plt.imread('star.png'))
wordcloud = WordCloud(background_color='white', mask=cloud_mask, contour_width=3, contour_color='steelblue')
word_frequencies = {key: word_df.loc[i, 'count'] for i, key in enumerate(word_df['word'])}
wordcloud = wordcloud.fit_words(word_frequencies)
plt.imshow(wordcloud)
plt.axis('off')
plt.show()

这段代码首先导入了必要的Python库,并读取了数据。接着使用结巴分词库对评论进行了分词处理,并创建了一个词频表。最后,使用词频数据生成了一个词云图,展示了评论中最常见的词汇。这个过程展示了如何进行文本挖掘,分析情感,并以可视化的方式呈现结果。

最后修改于:2024年08月25日 19:32

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日