Python爬虫+可视化分析技术实现招聘网站岗位数据抓取与分析推荐系统_基于网络爬虫的求职大数据获取及分析系统
import requests
from bs4 import BeautifulSoup
import pandas as pd
import matplotlib.pyplot as plt
# 设置请求头,模拟浏览器访问
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
# 获取网页内容
def get_content(url):
response = requests.get(url, headers=headers)
return response.text
# 解析网页,提取数据
def parse_data(html):
soup = BeautifulSoup(html, 'lxml')
jobs = soup.find_all('div', class_='job-title')
companies = soup.find_all('div', class_='company-name')
locations = soup.find_all('div', class_='location')
job_descriptions = soup.find_all('div', class_='job-snippet')
data = {
'Job Title': [job.text for job in jobs],
'Company': [company.text for company in companies],
'Location': [location.text for location in locations],
'Job Description': [job_description.text for job_description in job_descriptions]
}
return pd.DataFrame(data)
# 分析数据
def analyze_data(df):
# 分析不同职位的数量
job_counts = df['Job Title'].value_counts()
job_counts.plot(kind='bar')
plt.title('Job Counts')
plt.xlabel('Job Title')
plt.ylabel('Count')
plt.show()
# 主函数
def main():
url = 'https://www.indeed.com/jobs?q=data+scientist&l=New+York&start='
html = get_content(url)
df = parse_data(html)
analyze_data(df)
if __name__ == '__main__':
main()
这段代码展示了如何使用Python进行网页爬取,并使用BeautifulSoup进行数据解析。然后,使用pandas进行数据处理,并利用matplotlib进行数据可视化分析。这个例子简单而直接,适合作为爬虫和可视化分析技术的入门教程。
评论已关闭