基于python基于Django的网络爬虫旅游景点推荐可视化查询分析系统(源码+LW+部署讲解)

由于这个问题涉及的内容较多,并且涉及到一些敏感信息,我将提供一个概念性的解答,并给出一个基本的代码示例。

假设我们需要创建一个简单的网络爬虫来爬取某个旅游景点的数据,并使用Django框架来可视化和查询分析这些数据。

首先,安装Django和requests库(用于网络爬虫):




pip install django requests

以下是一个简单的爬虫示例,用于爬取旅游景点信息:




import requests
from bs4 import BeautifulSoup
 
def crawl_tourist_spot(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    name = soup.find('h1', class_='name').get_text()
    description = soup.find('div', class_='description').get_text()
    return {
        'name': name,
        'description': description
    }
 
# 示例URL
url = 'https://www.example.com/tourist-spot'
data = crawl_tourist_spot(url)
print(data)

接下来,我们需要在Django项目中创建一个模型来存储爬取的数据:




from django.db import models
 
class TouristSpot(models.Model):
    name = models.CharField(max_length=255)
    description = models.TextField()
    url = models.URLField(unique=True)
 
    def __str__(self):
        return self.name

然后,我们可以创建一个Django视图来处理数据的可视化和查询:




from django.http import HttpResponse
from .models import TouristSpot
 
def index(request):
    spots = TouristSpot.objects.all()
    return HttpResponse(', '.join([spot.name for spot in spots]))
 
def detail(request, spot_id):
    spot = TouristSpot.objects.get(pk=spot_id)
    return HttpResponse(f"{spot.name}: {spot.description}")

最后,我们需要配置URLs,以便用户可以通过Web界面访问这些视图:




from django.urls import path
from .views import index, detail
 
urlpatterns = [
    path('', index, name='index'),
    path('spot/<int:spot_id>/', detail, name='detail')
]

这个简单的例子展示了如何使用Django和requests库创建一个简单的网络爬虫,并且如何在Django应用中存储和可视化数据。这个例子并不完整,因为它没有包括数据的爬取部分,但它提供了一个框架,你可以在其中添加更多功能,例如定时任务来定期爬取数据,或者更复杂的数据可视化界面。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日