多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDTZDTZDTZDTZDT6(提供Python代码)
import numpy as np
class Particle:
def __init__(self, n_dims, lb, ub):
self.position = np.random.uniform(lb, ub, n_dims)
self.velocity = np.zeros(n_dims)
self.pbest = self.position
self.fitness = self.evaluate(self.position)
def evaluate(self, position):
# 根据ZDT1、ZDT2、ZDT3、ZDT4、ZD函数的定义来编写
# 例如,对于ZDT1,fitness = position[0]
pass
def update(self, gbest, n_iter, n_particles, c1, c2, w):
for i in range(len(self.position)):
self.velocity[i] = w * self.velocity[i] + c1 * np.random.uniform() * (self.pbest[i] - self.position[i]) + c2 * np.random.uniform() * (gbest[i] - self.position[i])
self.position[i] += self.velocity[i]
if self.position[i] < lb[i]:
self.position[i] = lb[i]
elif self.position[i] > ub[i]:
self.position[i] = ub[i]
new_fitness = self.evaluate(self.position)
if new_fitness < self.fitness:
self.pbest = self.position
self.fitness = new_fitness
if new_fitness < gbest_fitness:
gbest = self.position
gbest_fitness = new_fitness
return gbest, gbest_fitness
# 初始化参数
n_dims = 30
n_particles = 100
max_iter = 500
lb = 0.0
ub = 1.0
c1 = 2.0
c2 = 2.0
w = 0.9
n_iter = 0
# 初始化粒子群
particles = [Particle(n_dims, lb, ub) for _ in range(n_particles)]
gbest = particles[0].position
gbest_fitness = particles[0].fitness
# 迭代优化
while n_iter < max_iter:
for particle in particles:
gbest, gbest_fitness = particle.update(gbest, n_iter, n_particles, c1, c2, w)
n_iter += 1
# 输出结果
print("最佳位置:", gbest)
print("最佳适应度:", gbest_fitness)
这个代码实例提供了一个简化的多目标粒子群优化算法的框架。在这个框架中,我们定义了粒子类,它包括位置、速度、个体最优和全局最优位置更新方法。在迭代过程中,每个粒子根据其当前位置、个体最优和全局最优位置来更新速度和位置。在更新后,如果粒子的适应度值更小,则更新其个体最优位置,如果其适应度值更小于全局最优,则更新全局最优位置。
注意,这个代码示例中的evaluate
方法需要根据你要解决的ZDT函数的具体定义来实现。例如,对于ZDT1,它可能只是返回位置的第一个维度的值。其他ZDT函数的实现将涉及到更复杂的计算。
评论已关闭