PCA算法原理及实现(Python)
    		       		warning:
    		            这篇文章距离上次修改已过434天,其中的内容可能已经有所变动。
    		        
        		                
                
import numpy as np
from sklearn.decomposition import PCA
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
 
# 生成3D数据集
def make_data(w, b, N):
    rand_mat = np.random.randn(N, 3)  # 随机数矩阵
    data = np.dot(rand_mat, w) + b  # 数据生成
    return data
 
# 可视化数据集
def visualize_data(data):
    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(data[:, 0], data[:, 1], data[:, 2])
    plt.show()
 
# 主函数
if __name__ == "__main__":
    N = 100  # 数据点的数量
    w = np.array([[1.5, -2.0, 1.0], [0.5, 1.0, 2.0], [-1.0, 2.0, 3.0]])  # 权重矩阵
    b = np.array([1.0, -1.0, 3.0])  # 偏置向量
    data = make_data(w, b, N)  # 生成数据
 
    # 可视化原始数据
    visualize_data(data)
 
    # 使用PCA进行降维
    pca = PCA(n_components=2)  # 指定要降到的维数
    pca.fit(data)
    data_reduced = pca.transform(data)  # 降维后的数据
 
    # 可视化降维后的数据
    visualize_data(data_reduced)这段代码首先定义了一个生成3D数据集的函数,随后定义了一个可视化数据集的函数。主函数中,我们生成了一个3D数据集,并对其进行了可视化。然后,我们使用PCA算法对数据进行降维,并再次可视化了降维后的数据集。这个过程展示了PCA算法的基本应用,并且使用了matplotlib库来进行可视化。
评论已关闭