【python】Python中采集Prometheus数据,进行数据分析和可视化展示




from prometheus_api import Prometheus
from prometheus_api.utils import parse_range_from_time_str
from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt
 
# 配置Prometheus服务器
prometheus_url = 'http://your.prometheus.server.com:9090'
start_time = '2023-04-01T00:00:00Z'  # 开始时间
end_time = '2023-04-02T00:00:00Z'    # 结束时间
 
# 初始化Prometheus客户端
prom = Prometheus(url=prometheus_url)
 
# 查询指标数据
query = 'http_requests_total{job="myjob"}[1h]'  # 替换为你的查询表达式
range_seconds = parse_range_from_time_str(start_time, end_time)
result = prom.query_range(query, start_time, end_time)
 
# 将结果转换为pandas DataFrame
df = pd.DataFrame(result.get('data').get('result'))
df['time'] = pd.to_datetime(df['time'], unit='ms')
 
# 对数据进行处理和分析,例如计算每小时的平均请求数
hourly_average = df.groupby(df['time'].dt.floor('H'))['value'].mean().reset_index()
 
# 绘制每小时平均请求数的图表
plt.figure(figsize=(10, 5))
plt.plot(hourly_average['time'], hourly_average['value'], marker='o')
plt.title('Hourly Average HTTP Requests')
plt.xlabel('Time')
plt.ylabel('Requests')
plt.show()
 
# 注意:以上代码需要安装prometheus_api库,可以使用pip install prometheus_api进行安装。
# 同时,需要替换'your.prometheus.server.com:9090'为实际Prometheus服务器的URL,以及修改查询表达式'query'为你感兴趣的指标。

这段代码展示了如何使用prometheus_api库从Prometheus服务器获取数据,并使用pandasmatplotlib进行数据处理和可视化。需要注意的是,你需要根据你的Prometheus服务器配置相应的URL和查询表达式。

最后修改于:2024年08月08日 09:05

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日