【爬虫、数据可视化实战】以“人口”话题为例爬取实时微博数据并进行舆情分析

由于原始代码已经提供了一个很好的实例,以下是核心函数的简化版本,展示如何使用Python爬取实时微博数据并保存到CSV文件中。




import requests
import csv
 
# 微博实时热搜索接口
weibo_api = 'https://s.weibo.com/weibo/ajax_hot_data?type=realtime&Referer=https%3A%2F%2Fs.weibo.com%2Fweibo%2Fajax_hot_data%3Ftype%3Drealtime%26Referer%3Dhttps%253A%252F%252Fs.weibo.com%252Fweibo%252Fajax_hot_data%253Ftype%253Drealtime%2526Referer%253Dhttps%25253A%25252F%25252Fs.weibo.com'
 
# 发送请求
response = requests.get(weibo_api)
 
# 检查请求是否成功
if response.status_code == 200:
    # 解析JSON数据
    data = response.json()
    results = data['data']['hot_list']
 
    # 创建CSV文件并写入头部信息
    with open('weibo_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(['rank', 'keyword', 'count'])
 
        # 遍历结果并写入CSV文件
        for result in results:
            writer.writerow([result['rank'], result['keyword'], result['count']])
 
    print("数据爬取成功,已保存到weibo_data.csv文件。")
else:
    print("数据爬取失败,状态码:", response.status_code)

这段代码首先定义了微博实时热搜索的API接口,然后发送GET请求并检查响应状态。如果请求成功,它会解析JSON数据,并将热搜数据写入CSV文件。这个例子展示了如何使用Python进行简单的网络爬取,并对数据进行存储,为进一步的分析和可视化做准备。

none
最后修改于:2024年08月19日 21:46

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日