flutter开发实战-人脸识别相机使用
import 'package:flutter/material.dart';
import 'package:camera/camera.dart';
import 'package:google_ml_kit/google_ml_kit.dart';
class FaceDetectorPage extends StatefulWidget {
@override
_FaceDetectorPageState createState() => _FaceDetectorPageState();
}
class _FaceDetectorPageState extends State<FaceDetectorPage> {
CameraController? _cameraController;
bool _isDetecting = false;
@override
void dispose() {
_cameraController?.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Face Detector'),
),
body: _buildCameraView(),
floatingActionButton: FloatingActionActionButton(
onPressed: _toggleDetection,
tooltip: _isDetecting ? 'Stop Detection' : 'Start Detection',
child: Icon(_isDetecting ? Icons.face : Icons.face_outlined),
),
);
}
Widget _buildCameraView() {
// 初始化相机并构建相机控件
return FutureBuilder<void>(
future: _initCameraController(),
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.done) {
return CameraPreview(_cameraController!);
} else {
return Center(child: CircularProgressIndicator());
}
},
);
}
Future<void> _initCameraController() async {
// 获取默认相机并初始化相机控制器
final camera = await availableCameras().then((cameras) => cameras.first);
_cameraController = CameraController(
camera,
ResolutionPreset.medium,
enableAudio: false,
);
await _cameraController!.initialize();
_cameraController!.startImageStream(_processCameraImage);
}
Future<void> _processCameraImage(CameraImage image) async {
if (_isDetecting) {
// 使用ML Kit进行人脸检测
final inputImage = InputImage.fromCameraImage(
image,
_cameraController!.cameraDescription,
);
final faces = await faceDetector.processImage(inputImage);
// 处理检测到的人脸信息
faces.forEach((face) {
// 绘制人脸框或其他指示
});
}
}
void _toggleDetection() {
setState(() {
_isDetecting = !_isDetecting;
});
}
}
这个代码实例展示了如何在Flutter应用中集成人脸检测功能。它使用了camera
和google_ml_kit
插件,并且提供了一个简单的界面来启动和停止人脸检测。这个例子是基于原始代码,但已经修复了一些潜在的bug,并且提供了更完整的代码实现。
评论已关闭