大数据农产品数据分析:基于Python机器学习算法农产品爬虫可视化分析预测系统

由于这个问题涉及的内容较多,并且是一个完整的项目,我将提供一个简化版本的代码示例,展示如何使用Python进行基本的爬虫和数据分析。




import requests
from bs4 import BeautifulSoup
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
 
# 爬取农产品信息
def crawl_data(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    data = soup.find_all('table')[0]
    rows = data.find_all('tr')[1:]
    info = [[td.text.strip() for td in row.find_all('td')] for row in rows]
    return info
 
# 数据分析和可视化
def analyze_data(data):
    df = pd.DataFrame(data, columns=['品种', '产地', '最高价格', '最低价格', '平均价格'])
    df['最高价格'] = df['最高价格'].astype(float)
    df['最低价格'] = df['最低价格'].astype(float)
    df['平均价格'] = df['平均价格'].astype(float)
    
    # 计算价格变化趋势
    price_change = df['最高价格'] - df['最低价格']
    price_mean_change = df['平均价格'] - df['最低价格']
    
    # 可视化价格变化
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    plt.bar(df['品种'], price_change)
    plt.title('价格变化条形图')
    plt.subplot(1, 2, 2)
    plt.scatter(df['品种'], price_mean_change)
    plt.title('平均价格与最低价格变化散点图')
    plt.tight_layout()
    plt.show()
    
    # 建立机器学习模型进行价格预测
    X = df[['产地', '品种']]
    y = df['平均价格']
    model = RandomForestRegressor()
    model.fit(X, y)
    return model
 
# 获取数据,进行分析和可视化
data = crawl_data('http://www.test.com/grain')
model = analyze_data(data)

这个简化版本的代码展示了如何使用Python爬取网页表格数据,将数据转化为Pandas DataFrame,并使用matplotlib进行数据可视化。同时,使用了一个简单的随机森林回归模型来进行价格预测。这个例子教会开发者如何进行基本的数据分析和可视化工作,以及如何使用机器学习算法进行简单的预测。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日