Python爬取微博(APP)榜单爬虫及数据可视化,整理出Python逆向系列学习进阶视频

由于原代码已经非常完整,这里只提供关键函数的实现和注释。




import requests
import json
import pandas as pd
 
# 请求头部,模拟APP请求
headers = {
    'Cookie': '你的微博Cookie',
    'User-Agent': '你的User-Agent',
    'Referer': 'https://weibo.com/',
}
 
# 获取微博用户信息
def get_user_info(user_id):
    url = f'https://weibo.com/p/100505{user_id}/info?is_search=0&visible=0&is_tag_user=0'
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return {
            'user_id': user_id,
            'name': data['data']['user']['name'],
            'gender': data['data']['user']['gender'],
            'description': data['data']['user']['description'],
            'follows_count': data['data']['user']['follows_count'],
            'fans_count': data['data']['user']['fans_count'],
            'weibo_count': data['data']['user']['weibo_count'],
        }
    else:
        return None
 
# 获取微博用户信息并保存到CSV
def save_user_info_to_csv(user_id):
    user_info = get_user_info(user_id)
    if user_info:
        df = pd.DataFrame([user_info])
        df.to_csv('user_info.csv', mode='a', header=False, index=False)
 
# 主函数,用于爬取微博榜单
def crawl_weibo_ranking(ranking_type, top_num):
    for rank in range(1, top_num + 1):
        user_id = get_user_id_from_ranking(ranking_type, rank)
        if user_id:
            save_user_info_to_csv(user_id)
            print(f'正在抓取第{rank}名用户信息...')
 
# 获取微博榜单上的用户ID
def get_user_id_from_ranking(ranking_type, rank):
    url = f'https://weibo.com/p/100505{ranking_type}/ranklist?topnav=1&rank={rank}&is_search=0&visible=0&is_tag_user=0'
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        data = response.json()
        return data['data']['user']['id']
    else:
        return None
 
# 调用函数爬取微博榜单,例如:热门榜单
crawl_weibo_ranking('hot', 100)

这段代码提供了两个关键函数:get_user_infosave_user_info_to_csvget_user_info 函数负责请求微博用户的个人信息页面,并解析返回的数据。save_user_info_to_csv 函数则负责将用户信息保存到CSV文件中。这两个函数是爬取微博榜单的基础,并且演示了如何使用Python进行网络请求和数据解析。

最后修改于:2024年08月17日 20:17

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日