Python爬虫之增量式爬虫

增量式爬虫是一种爬虫设计方式,它会记录每次爬取的信息,并在下一次爬取时只处理新产生的或者有更新的信息。这样可以减少重复爬取,节约时间和资源。

以下是一个简单的示例,使用BeautifulSoup和requests库来实现一个增量式的新闻网站爬虫。




import requests
from bs4 import BeautifulSoup
import sqlite3
import datetime
 
# 数据库连接
conn = sqlite3.connect('news.db')
cur = conn.cursor()
 
# 创建数据库表
cur.execute('''
CREATE TABLE IF NOT EXISTS news (
    id INTEGER PRIMARY KEY,
    title TEXT,
    url TEXT,
    published_at DATE,
    crawled_at DATE
)
''')
conn.commit()
 
# 获取最后一次爬取的时间
cur.execute('SELECT MAX(crawled_at) FROM news')
last_crawled_at = cur.fetchone()[0]
if last_crawled_at is None:
    last_crawled_at = datetime.date(2020, 1, 1)  # 设定一个初始的时间
 
# 目标网页
url = 'https://news.example.com/news'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
 
# 解析新闻
for article in soup.select('.article'):
    title = article.select_one('.title').text
    url = article.select_one('.title a')['href']
    published_at = datetime.datetime.strptime(article.select_one('.published-at').text, '%Y-%m-%d')
    
    # 只抓取从last_crawled_at以后的新闻或更新的新闻
    if published_at.date() > last_crawled_at:
        # 插入数据库
        cur.execute('''
            INSERT INTO news (title, url, published_at, crawled_at)
            VALUES (?, ?, ?, ?)
        ''', (title, url, published_at.date(), datetime.date.today()))
        conn.commit()
 
# 关闭数据库连接
conn.close()

这个例子中,我们使用了一个SQLite数据库来记录每篇新闻的爬取时间。在每次爬取新闻前,我们会查询数据库中最后一次的爬取时间,并只抓取自那以后发布的或更新的新闻。这样就实现了一个增量式的爬虫。

最后修改于:2024年08月17日 20:16

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日