【python由站点数据插值到网格数据方法对比】




import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
 
# 创建一些站点数据
np.random.seed(1)
points = np.random.rand(10, 2)  # 站点坐标
values = np.random.rand(10) * 10.0  # 站点值
 
# 定义网格
x = np.linspace(0, 1, 50)
y = np.linspace(0, 1, 50)
X, Y = np.meshgrid(x, y)
 
# 使用scipy的griddata进行插值
Z1 = griddata((points[:, 0], points[:, 1]), values, (X, Y), method='linear')
 
# 使用自定义的插值方法
def custom_linear_interp(points, values, xi, yi):
    # 这里只是一个简单的示例,实际情况可能需要更复杂的插值方法
    x_points, y_points = points
    v_above = np.interp(xi, x_points[yi == 1], values[yi == 1])
    v_below = np.interp(xi, x_points[yi == 0], values[yi == 0])
    return np.where(yi >= 0.5, v_above, v_below)
 
Z2 = custom_linear_interp(points, values, X, Y)
 
# 可视化结果
fig, ax = plt.subplots()
 
cs = ax.contourf(X, Y, Z1, levels=np.arange(0, 11, 1), cmap=plt.cm.viridis)
ax.contour(X, Y, Z1, levels=np.arange(0, 11, 1), colors='k', linewidths=0.5)
 
ax.scatter(points[:, 0], points[:, 1], s=50, c=values, cmap=plt.cm.viridis, edgecolors='k', zorder=10)
 
ax.set_title('Scipy griddata result')
 
fig, ax = plt.subplots()
 
cs = ax.contourf(X, Y, Z2, levels=np.arange(0, 11, 1), cmap=plt.cm.viridis)
ax.contour(X, Y, Z2, levels=np.arange(0, 11, 1), colors='k', linewidths=0.5)
 
ax.scatter(points[:, 0], points[:, 1], s=50, c=values, cmap=plt.cm.viridis, edgecolors='k', zorder=10)
 
ax.set_title('Custom linear interpolation result')
 
plt.show()

这段代码首先创建了一些随机的站点数据,然后定义了一个网格。接着使用了scipy.interpolate.griddata进行插值,并且演示了如何实现一个简单的自定义线性插值函数。最后,通过matplotlibcontourfcontour方法分别绘制了两种方法的插值结果,并用散点标出了原始的站点位置。

最后修改于:2024年08月17日 20:13

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日