使用Apache Kafka进行分布式流处理




import org.apache.kafka.streams.kstream.Materialized
import org.apache.kafka.streams.scala.kstream.KGroupedStream
import org.apache.kafka.streams.scala.Serdes
import org.apache.kafka.streams.scala.StreamsBuilder
import org.apache.kafka.streams.{KafkaStreams, StreamsConfig}
 
object KafkaStreamsExample {
  def main(args: Array[String]): Unit = {
    // 配置Kafka Streams
    val props = new Properties()
    props.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-application")
    props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")
 
    // 构建StreamsBuilder
    val builder = new StreamsBuilder()
 
    // 获取输入Topic的KStream
    val textLines: KStream[Array[Byte], String] = builder.stream[Array[Byte], String]("input-topic")
 
    // 对输入的文本进行处理
    val processedText: KStream[Array[Byte], String] = textLines.map((key, value) => (key, value.toUpperCase()))
 
    // 将处理后的数据按键进行分组并进行聚合
    val groupedByKey: KGroupedStream[Array[Byte], String] = processedText.groupBy((key, value) => (key, value))(Materialized.as("counts-store"))
 
    // 计算每个键的出现次数
    val count: KStream[Array[Byte], Long] = groupedByKey.count()
 
    // 将结果输出到另一个Topic
    count.to("output-topic")
 
    // 构建Kafka Streams实例并启动
    val streams: KafkaStreams = new KafkaStreams(builder.build(), props)
    streams.start()
  }
}

这段代码展示了如何使用Apache Kafka Streams库在Scala中进行简单的流处理。它配置了Kafka Streams,定义了输入输出Topic,对接收到的文本进行了大写转换,并计算了每个文本键的出现次数,然后将结果输出到另一个Topic。这个例子简单明了,并且使用了Kafka Streams的核心API。

最后修改于:2024年08月17日 18:31

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日