Python深度学习环境配置(Pytorch、CUDA、cuDNN),包括Anaconda搭配Pycharm的环境搭建以及基础使用教程(保姆级教程,适合小白、深度学习零基础入门)

为了配置深度学习环境,您需要按照以下步骤操作:

  1. 安装Anaconda。
  2. 创建新的Python环境。
  3. 安装Pytorch。
  4. 安装CUDA(如果需要GPU加速)。
  5. 安装cuDNN。
  6. 配置Pycharm。

以下是具体的命令和步骤:

  1. 安装Anaconda。

    • 访问Anaconda官网下载适合您操作系统的Anaconda版本。
    • 安装时选择适当的路径,并添加Anaconda到系统的环境变量中。
  2. 创建新的Python环境。

    
    
    
    conda create -n myenv python=3.8
  3. 激活新创建的环境。

    
    
    
    conda activate myenv
  4. 安装Pytorch。

    • 访问PyTorch官网的安装指南,选择合适的版本和配置。
    • 在Anaconda环境中使用以下命令安装:

      
      
      
      conda install pytorch torchvision torchaudio cudatoolkit=xx.x -c pytorch

      其中cudatoolkit=xx.x应与您的CUDA版本对应。

  5. 安装CUDA(如果需要)。

    • 访问NVIDIA官网下载与您的GPU相匹配的CUDA版本。
    • 安装CUDA,并确保CUDA的安装路径添加到系统的环境变量中。
  6. 安装cuDNN。

    • 从NVIDIA官网下载与您的CUDA版本对应的cuDNN。
    • 解压并将bin、include、lib文件夹中的文件复制到CUDA相应的文件夹中。
  7. 配置Pycharm。

    • 打开Pycharm,选择刚创建的环境作为项目解释器。
    • 确保在运行配置中,将Python解释器设置为Anaconda环境中的解释器。

注意:确保你的显卡驱动是最新的,以便与CUDA和cuDNN兼容。如果不需要GPU加速,可以忽略CUDA和cuDNN的安装。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日