【Python实战】Python采集情感音频

要采集情感音频,你可以使用Python的pyaudio库来录制音频,并使用深度学习模型对音频进行情感分析。以下是一个简单的例子,展示如何使用pyaudio录制音频并将其保存为文件。

首先,安装pyaudio库:




pip install pyaudio

然后,使用以下代码录制音频:




import pyaudio
import wave
 
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 2
RATE = 44100
RECORD_SECONDS = 5
WAVE_OUTPUT_FILENAME = "emotion_audio.wav"
 
p = pyaudio.PyAudio()
 
stream = p.open(format=FORMAT,
                channels=CHANNELS,
                rate=RATE,
                input=True,
                frames_per_buffer=CHUNK)
 
print("开始录音,按回车键停止。")
 
frames = []
 
while True:
    data = stream.read(CHUNK)
    frames.append(data)
    if len(data) == 0:
        break
 
print("录音结束。")
 
stream.stop_stream()
stream.close()
p.terminate()
 
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()

这段代码会录制5秒钟的音频,并将其保存为名为emotion_audio.wav的文件。

接下来,你需要一个情感分析的深度学习模型。你可以使用预训练的模型如BERT,或者自己训练一个模型。一旦你有了模型,你可以使用如下代码将音频文件的情感进行分析:




from tensorflow.keras.models import load_model
import librosa
import numpy as np
 
model = load_model('your_emotion_model.h5')
 
def predict_emotion(audio_file_path):
    y, sr = librosa.load(audio_file_path)
    mfccs = librosa.feature.mfcc(y=y, sr=sr)
    mfccs_norm = np.mean(mfccs, axis=0)
    prediction = model.predict(np.array([mfccs_norm]))
    return prediction
 
emotion_prediction = predict_emotion('emotion_audio.wav')
print(emotion_prediction)

确保替换your_emotion_model.h5为你的情感分析模型的路径。这段代码将音频文件中的情感进行预测,并打印出来。

请注意,音频处理和深度学习模型的应用会根据你的具体需求和模型而有所不同。上述代码提供了一个简单的示例,展示了如何开始这个过程。

最后修改于:2024年08月07日 20:56

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日