联邦学习算法介绍-FedAvg详细案例-Python代码获取




import numpy as np
 
# 假设这是一个简化的函数,用于初始化模型权重
def init_model_weights(num_weights):
    return np.random.rand(num_weights)
 
# 假设这是一个简化的函数,用于计算模型的损失
def calculate_loss(model_weights):
    # 实际计算损失的逻辑
    return np.sum(model_weights)
 
# 假设这是一个简化的函数,用于在一个局部数据集上训练模型
def local_train(model_weights, local_data, num_epochs):
    for epoch in range(num_epochs):
        # 实际训练逻辑
        model_weights += np.sum(local_data) / len(local_data)
    return model_weights
 
# 假设这是一个简化的函数,用于在全局数据集上验证模型
def global_evaluate(model_weights, global_data):
    # 实际验证逻辑
    return calculate_loss(model_weights)
 
# 联邦学习训练过程的一个简化示例
def federated_averaging(num_rounds, clients_data, num_epochs):
    model_weights = init_model_weights(10)  # 假设有10个权重
    for round_num in range(num_rounds):
        # 在每个客户端更新本地模型
        updated_clients_data = {client_id: local_train(model_weights, client_data, num_epochs)
                                for client_id, client_data in clients_data.items()}
        # 计算新的全局模型权重
        model_weights = np.array([np.mean([client_data[i] for client_data in updated_clients_data.values()])
                                  for i in range(len(model_weights))])
    return model_weights
 
# 示例使用
clients_data = {'client1': np.array([1, 2, 3]), 'client2': np.array([4, 5, 6])}
model_weights = federated_averaging(2, clients_data, 1)  # 假设有2轮训练,每个客户端训练1个周期
print(model_weights)

这个代码示例提供了一个简化版本的联邦学习训练过程,其中包括初始化模型权重、计算损失、在局部数据上训练模型、在全局数据上验证模型以及执行联邦学习算法(即平均客户端的更新)。这个过程是为了演示联邦学习算法的一个可能实现,并非真实世界中的联邦学习库。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日