【机器学习】Python与深度学习的完美结合——深度学习在医学影像诊断中的惊人表现
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
from torchvision.utils import save_image
# 定义模型
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 12),
nn.ReLU(),
nn.Linear(12, 3), # 假设我们将图像编码为3维向量
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.ReLU(),
nn.Linear(12, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 28*28),
nn.Sigmoid(), # 使用Sigmoid函数将输出映射到[0, 1]区间
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
# 准备数据
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])
train_set = MNIST('data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, shuffle=True, batch_size=128)
# 实例化模型、损失函数和优化器
model = AutoEncoder().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_func = nn.MSELoss()
# 训练模型
for epoch in range(10):
for batch_idx, (data, _) in enumerate(train_loader):
data = data.view(-1, 28*28).to(device)
optimizer.zero_grad()
encoded, decoded = model(data)
loss = loss_func(decoded, data)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
0. * batch_idx / len(train_loader), loss.item()))
# 保存编码后的特征
with torch.no_grad():
encoded_images = model.encoder(train_set[:3].view(-1, 28*28).to(device))
save_image(encoded_images.view(-1, 28, 28), 'encoded_images.png')
# 注意:这里的代码仅作为示例,实际应用中需要根据医学影像数据的特点进行调整
这段代码展示了如何使用PyTorch来训练一个自编码器模型,它将医学影像数据(这里以MNIST手写数据作为例子)转换为一个低维空间中的向量表示,并尝试从这个向量重建原始图像。在实际应用中,影像数据需要进行预处理,包括图像尺寸调整、归一化等步骤,并且损失函数、优化器和模型架构都需要根据医学影像数
评论已关闭