[python]随机选取的方式——random.choices()

random.choices() 是 Python 3.6 中 random 模块新增的一个函数,它用于从指定的序列中随机选择元素。

random.choices()random.sample() 都可以从序列中随机选取元素,但它们之间有一个关键的区别:random.choices() 可以选择重复的元素,而 random.sample() 不可以。

下面是 random.choices() 的基本使用方法:

  1. 从列表中随机选取元素:



import random
 
list = [1, 2, 3, 4, 5]
result = random.choices(list, k=2)
print(result)  # 输出可能是 [1, 2] 或 [3, 4] 等

在上面的代码中,k 参数表示我们想要从列表中随机选取多少个元素。

  1. 从元组中随机选取元素:



import random
 
tuple = (1, 2, 3, 4, 5)
result = random.choices(tuple, k=2)
print(result)  # 输出可能是 [1, 2] 或 [3, 4] 等
  1. 从集合中随机选取元素:



import random
 
set = {1, 2, 3, 4, 5}
result = random.choices(set, k=2)
print(result)  # 输出可能是 [1, 2] 或 [3, 4] 等
  1. 从字符串中随机选取字符:



import random
 
string = "ABCDE"
result = random.choices(string, k=2)
print(result)  # 输出可能是 ['A', 'B'] 或 ['C', 'D'] 等
  1. 使用random.choices()来选择重复的元素:



import random
 
list = [1, 2, 2, 3, 3, 3]
result = random.choices(list, k=2)
print(result)  # 输出可能是 [2, 2] 或 [3, 3] 等

在上面的代码中,我们可以看到,即使列表中有重复的元素,random.choices() 也可以从中随机选取重复的元素。

注意:random.choices() 返回的是一个列表,即使你选取的元素个数是1个。如果你想得到一个元素的序列,你可以使用 result = random.choices(*population, k=1)[0] 来获取。




import random
 
list = [1, 2, 3, 4, 5]
result = random.choices(list, k=1)
print(result[0])  # 输出可能是 1 或 2 或 3 或 4 或 5

在上面的代码中,result[0] 就是我们随机选取的单个元素。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日