三个案例,彻底学会Python三维绘图

在Python中,你可以使用matplotlib库进行三维绘图。以下是三个例子,展示如何使用matplotlibmplot3d工具包进行三维绘制。

例子1:绘制三维散点图




import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
 
# 生成一些数据
x = [1, 2, 3, 4, 5]
y = [5, 6, 2, 3, 13]
z = [2, 3, 3, 3, 5]
 
# 绘制散点图
ax.scatter(x, y, z)
 
plt.show()

例子2:绘制三维线框图




import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
 
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
 
# 生成一些数据
x = [1, 2, 3, 4, 5]
y = [5, 6, 2, 3, 13]
z = [2, 3, 3, 3, 5]
 
# 绘制线框图
ax.plot(x, y, z)
 
plt.show()

例子3:绘制三维表面图




import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
 
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
 
# 生成一些数据
x = np.linspace(0, 10, 100)
y = np.linspace(0, 10, 100)
x, y = np.meshgrid(x, y)
z = np.sin(np.sqrt(x**2 + y**2))
 
# 绘制表面图
ax.plot_surface(x, y, z)
 
plt.show()

这些例子展示了如何使用matplotlibmplot3d工具包创建基本的三维图形。你可以通过修改数据和选择不同的绘图函数来自定义这些例子以满足你的具体需求。

最后修改于:2024年08月16日 10:25

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日