Hadoop+Spark大数据技术 第四次作业 第四章 HBase分布式DB

在Hadoop生态系统中,HBase是一个分布式的、面向列的开源数据库,用于存储非结构化和半结构化的松散数据。以下是一个使用HBase API的基本示例,展示了如何在Java环境中进行HBase数据的增删改查操作。




import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
 
import java.io.IOException;
 
public class HBaseExample {
 
    public static void main(String[] args) throws IOException {
        // 配置HBase
        Configuration config = HBaseConfiguration.create();
        config.set("hbase.zookeeper.quorum", "your_zookeeper_quorum");
        config.set("hbase.zookeeper.property.clientPort", "your_client_port");
 
        // 建立连接
        try (Connection connection = ConnectionFactory.createConnection(config);
             Table table = connection.getTable(TableName.valueOf("your_table_name"))) {
 
            // 插入数据
            Put put = new Put(Bytes.toBytes("row1"));
            put.addColumn(Bytes.toBytes("family1"), Bytes.toBytes("qualifier1"), Bytes.toBytes("value1"));
            table.put(put);
 
            // 获取数据
            Get get = new Get(Bytes.toBytes("row1"));
            byte[] value = table.get(get).getValue(Bytes.toBytes("family1"), Bytes.toBytes("qualifier1"));
            System.out.println("获取到的数据: " + Bytes.toString(value));
 
            // 删除数据
            Delete delete = new Delete(Bytes.toBytes("row1"));
            delete.addColumn(Bytes.toBytes("family1"), Bytes.toBytes("qualifier1"));
            table.delete(delete);
        }
    }
}

在这个例子中,我们首先配置了HBase的连接,然后通过ConnectionTable对象进行数据的增删改查操作。需要注意的是,你需要替换your_zookeeper_quorumyour_client_port为你的HBase集群的Zookeeper Quorum和端口号,以及your_table_name为你要操作的表名。

这个代码片段展示了如何在Java中使用HBase客户端API进行基本的数据操作。在实际应用中,你可能需要处理更复杂的逻辑,例如异常处理、批量操作、多线程访问等。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日