django基于python的电影影片数据爬取与数据分析爬虫和可视化分析系统(源码+LW+部署讲解)

由于提供的代码较为复杂且涉及版权问题,我将提供一个简化的示例,展示如何在Django中创建一个简单的电影爬取和数据可视化系统的框架。




# 导入Django模块
from django.shortcuts import render
from django.http import HttpResponse
import requests
from bs4 import BeautifulSoup
import pandas as pd
 
# 定义一个视图函数来爬取电影数据
def crawl_movies(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    # 假设网页结构已知,这里提取电影名称和评分
    movies = soup.find_all('div', class_='movie_item')
    data = []
    for movie in movies:
        name = movie.find('h3', class_='name').text
        score = movie.find('span', class_='score').text
        data.append({'name': name, 'score': score})
    return data
 
# 定义一个视图函数来处理数据并提供可视化
def movie_analysis(request):
    # 爬取数据
    movie_data = crawl_movies('http://example.com/movies')
    # 转换为DataFrame
    df = pd.DataFrame(movie_data)
    # 进行数据分析,例如计算平均评分
    avg_score = df['score'].mean()
    # 将数据和分析结果传递给模板
    context = {'movies': df, 'avg_score': avg_score}
    return render(request, 'movie_analysis.html', context)
 
# 定义URL路由
from django.urls import path
 
urlpatterns = [
    path('analyze/', movie_analysis, name='movie_analysis'),
]

在这个例子中,我们定义了两个视图函数:crawl_movies用于爬取电影数据,movie_analysis用于处理数据并提供可视化。这只是一个框架,实际的爬虫逻辑和数据分析需要根据实际网站结构进行编写。同时,我们需要定义相应的URL路由,以便用户可以通过Web访问这些功能。

请注意,这个例子没有详细实现数据爬取和可视化的所有细节,而是展示了如何在Django框架中设计和组织爬虫和数据分析的逻辑。实际应用中,你需要根据目标网站的结构和数据需求来编写爬虫代码,并确保遵守相关的法律和道德准则。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日