【Python特征工程系列】利用SHAP进行特征重要性分析-决策树模型为例(案例+源码)




import numpy as np
import shap
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
 
# 加载波士顿房价数据集
data = load_boston()
X, y = data.data, data.target
 
# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1337)
 
# 初始化决策树模型
model = DecisionTreeRegressor(random_state=1337)
 
# 训练模型
model.fit(X_train, y_train)
 
# 使用SHAP值进行特征重要性评估
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)
 
# 计算特征的平均SHAP值来评估重要性
mean_shap_values = np.abs(shap_values).mean(0)
 
# 根据平均SHAP值进行特征排序
sorted_indices = np.argsort(mean_shap_values)[::-1]
 
# 打印排名前5的特征的SHAP值和特征名称
for i in range(5):
    shap_value = mean_shap_values[sorted_indices[i]]
    feature_name = data.feature_names[sorted_indices[i]]
    print(f"特征{feature_name}: SHAP值 = {shap_value:.2f}")

这段代码使用SHAP库来评估波士顿房价数据集中特征的重要性。首先加载数据集,划分为训练集和测试集,然后初始化一个决策树模型并训练。接着使用shap.TreeExplainer来计算SHAP值,并通过计算平均SHAP值来评估特征的重要性,最后打印出排名前5的特征的名称和SHAP值。

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日