Python轴承故障诊断 连续小波变换CWT
import numpy as np
import cwt
import matplotlib.pyplot as plt
# 假设cwt模块提供了cwt函数,以下是使用cwt进行故障诊断的示例
# 生成模拟数据
t = np.linspace(0, 1, 1000)
x = np.sin(2 * np.pi * 7 * t) + np.sin(2 * np.pi * 13 * t)
# 执行连续小波变换
scales = np.arange(1, 128)
periods = 1 / scales
cwt_coeffs = cwt.cwt(x, periods)
# 绘制CWT结果
plt.figure()
plt.imshow(np.abs(cwt_coeffs), extent=[0, 1, 1, 128], cmap='jet', aspect='auto',
vmax=abs(cwt_coeffs).max(), vmin=-abs(cwt_coeffs).max())
plt.show()
# 此处的代码假设cwt模块是一个已有的库,提供了cwt函数来计算连续小波变换。
# 如果cwt模块不存在,需要先安装或者自行实现cwt函数。
# 这个示例展示了如何生成模拟数据,应用CWT进行变换,并绘制变换结果。
这个代码示例展示了如何使用假设的cwt模块中的cwt函数来执行连续小波变换,并绘制变换系数的绝对值图。这个过程对于诊断轴承运动信号中的故障非常有用,比如分辨出异常的周期或幅度。
评论已关闭