大数据测试:构建Hadoop和Spark分布式HA运行环境!
在这个例子中,我们将使用Ansible来自动化地配置和部署一个Hadoop和Spark的分布式高可用性(HA)环境。
# site.yml - 主Ansible配置文件
---
- hosts: all
become: yes
roles:
- hadoop
- spark
# hadoop/tasks/main.yml - Hadoop配置任务
---
# 安装Hadoop
- name: Install Hadoop
apt: name=hadoop state=present
# 配置Hadoop HA
- name: Copy Hadoop configuration files
copy: src=hadoop.conf.j2 dest=/etc/hadoop/conf/hadoop-site.xml
# 启动Hadoop服务
- name: Start Hadoop services
service: name=hadoop-hdfs-namenode state=started
when: inventory_hostname in groups['namenode']
# spark/tasks/main.yml - Spark配置任务
---
# 安装Spark
- name: Install Spark
apt: name=spark state=present
# 配置Spark
- name: Copy Spark configuration files
copy: src=spark.conf.j2 dest=/etc/spark/conf/spark-defaults.conf
# 启动Spark服务
- name: Start Spark services
service: name=spark state=started
...
# 假设的变量文件 `group_vars/all.yml`
---
hadoop_version: "3.2.1"
spark_version: "3.0.1"
# 假设的主机分组文件 `inventory`
---
[namenode]
nn1.example.com
[datanode]
dn1.example.com
dn2.example.com
[spark]
sn1.example.com
sn2.example.com
[zookeeper]
zk1.example.com
zk2.example.com
zk3.example.com
...
# 假设的Jinja2模板 `hadoop.conf.j2`
<configuration>
<!-- HA配置 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- 更多Hadoop配置 -->
</configuration>
# 假设的Jinja2模板 `spark.conf.j2`
spark.master spark://nn1.example.com:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://mycluster/spark-logs
# 更多Spark配置
在这个例子中,我们使用了Ansible的"hosts"文件来定义不同的主机组,并且使用了Jinja2模板来动态生成Hadoop和Spark的配置文件。这样的配置方法使得部署大规模分布式系统变得更加简单和可维护。
评论已关闭