【Python三方库】Python机器学习开源库之dlib库的简介、安装、使用方法、示例代码、注意事项等详细攻略

warning: 这篇文章距离上次修改已过203天,其中的内容可能已经有所变动。

dlib是一个使用现代C++编写的工具库,它主要用于机器学习和数学优化。它包含了机器学习的各个方面,例如:工具,高级集合,I/O处理,DNN(深度神经网络),最优化等。

安装dlib库

在Python中使用dlib,首先需要在系统中安装dlib。可以通过pip进行安装,但是需要注意的是,通过pip安装的dlib是不包含预训练模型的。如果需要预训练模型,需要从源代码安装。




pip install dlib

从源代码安装dlib,需要先安装dlib的依赖项,然后从源代码编译安装。




sudo apt-get install cmake
sudo apt-get install libboost-all-dev
sudo apt-get install libx11-dev
sudo apt-get install libopenblas-dev liblapack-dev
sudo apt-get install python-numpy
 
# 克隆dlib的git仓库
git clone https://github.com/davisking/dlib.git
cd dlib
mkdir build
cd build
cmake ..
cmake --build . --config Release
cd ..
python setup.py install --cmake-prefix-path=$(pwd)/build

使用dlib进行人脸识别

以下是一个使用dlib进行人脸识别的简单示例。




import dlib
from skimage import io
 
# 加载预训练的人脸识别模型
detector = dlib.get_frontal_face_detector()
 
# 读取图片
img = io.imread('path_to_image.jpg')
 
# 转换图片为灰度图片
gray_img = dlib.grayscale(img)
 
# 检测图片中的人脸
dets = detector(gray_img, 1)
 
# 打印检测到的人脸数量
print('Number of faces detected:', len(dets))
 
# 画出检测到的人脸
for i, d in enumerate(dets):
    print('Detection {}: Left: {} Top: {} Right: {} Bottom: {}'.format(
        i, d.left(), d.top(), d.right(), d.bottom()))

这个示例中,我们首先加载了dlib提供的人脸检测器模型,然后读取了一张图片并将其转换为灰度图像,最后使用检测器检测图片中的人脸。检测到的人脸信息包括人脸的位置和数量。

最后修改于:2024年08月12日 14:37

评论已关闭

推荐阅读

DDPG 模型解析,附Pytorch完整代码
2024年11月24日
DQN 模型解析,附Pytorch完整代码
2024年11月24日
AIGC实战——Transformer模型
2024年12月01日
Socket TCP 和 UDP 编程基础(Python)
2024年11月30日
python , tcp , udp
如何使用 ChatGPT 进行学术润色?你需要这些指令
2024年12月01日
AI
最新 Python 调用 OpenAi 详细教程实现问答、图像合成、图像理解、语音合成、语音识别(详细教程)
2024年11月24日
ChatGPT 和 DALL·E 2 配合生成故事绘本
2024年12月01日
omegaconf,一个超强的 Python 库!
2024年11月24日
【视觉AIGC识别】误差特征、人脸伪造检测、其他类型假图检测
2024年12月01日
[超级详细]如何在深度学习训练模型过程中使用 GPU 加速
2024年11月29日
Python 物理引擎pymunk最完整教程
2024年11月27日
MediaPipe 人体姿态与手指关键点检测教程
2024年11月27日
深入了解 Taipy:Python 打造 Web 应用的全面教程
2024年11月26日
基于Transformer的时间序列预测模型
2024年11月25日
Python在金融大数据分析中的AI应用(股价分析、量化交易)实战
2024年11月25日
AIGC Gradio系列学习教程之Components
2024年12月01日
Python3 `asyncio` — 异步 I/O,事件循环和并发工具
2024年11月30日
llama-factory SFT系列教程:大模型在自定义数据集 LoRA 训练与部署
2024年12月01日
Python 多线程和多进程用法
2024年11月24日
Python socket详解,全网最全教程
2024年11月27日