从0开始实现RRT路径规划算法(快速扩展随机树原理+python伪代码)
import numpy as np
class RRT:
def __init__(self, x_bounds, y_bounds, obstacle_list):
self.x_bounds = x_bounds
self.y_bounds = y_bounds
self.obstacle_list = obstacle_list
# 其他初始化参数
def nearest_neighbor(self, tree, point):
distances = [self.euclidian_dist(node.position, point) for node in tree]
min_dist_node = tree[distances.index(min(distances))]
return min_dist_node
def steer(self, from_node, to_point):
# 这里应该实现向量对齐的函数
pass
def add_node(self, tree, new_node):
tree.append(new_node)
def extend_tree(self, start_node, target_point, tree, obstacle_list):
nearest_node = self.nearest_neighbor(tree, target_point)
steer_point = self.steer(nearest_node, target_point)
if self.is_collision_free(nearest_node, steer_point, obstacle_list):
new_node = Node(steer_point, nearest_node)
self.add_node(tree, new_node)
return new_node
return None
def is_collision_free(self, from_node, to_point, obstacle_list):
# 这里应该实现无碰撞检查的函数
pass
def path_from_start(self, goal_node):
path = []
current_node = goal_node
while current_node is not None:
path.append(current_node.position)
current_node = current_node.parent
return path
def plan(self, start_point, target_point):
# 这里应该实现RRT路径规划的主循环
pass
# 以下是辅助函数和Node类定义
class Node:
def __init__(self, position, parent):
self.position = np.array(position)
self.parent = parent
def __eq__(self, other):
return np.array_equal(self.position, other.position)
# 其他辅助函数
这个伪代码实例提供了RRT算法的基本框架。在实际应用中,你需要实现具体的函数,如nearest_neighbor
来找到最接近目标点的节点,steer
来生成新的节点,is_collision_free
来检查新节点是否与障碍物不碰撞,以及主循环函数plan
来执行整个路径规划过程。这些函数的具体实现会依赖于你的应用环境和需求。
评论已关闭