分布式传感器算法评估LEACH聚类能量耗尽研究(Matlab代码实现)
    		       		warning:
    		            这篇文章距离上次修改已过449天,其中的内容可能已经有所变动。
    		        
        		                
                由于原始代码较为复杂且涉及版权问题,我们提供一个简化版本的核心函数实现,用于演示如何在MATLAB中实现LEACH聚类算法。
function [cluster_centers, cluster_assignments] = leach_clustering(data, num_clusters, max_iterations)
    % LEACH聚类算法实现
    % data: 输入数据矩阵,每行是一个样本
    % num_clusters: 期望的聚类数目
    % max_iterations: 最大迭代次数
 
    num_samples = size(data, 1);
    cluster_centers = data(randperm(num_samples, num_clusters), :); % 随机初始化聚类中心
    cluster_assignments = zeros(num_samples, 1); % 初始化样本到聚类的映射
    energy = inf; % 初始化能量
 
    for iter = 1:max_iterations
        % 更新每个样本的聚类赋值
        for i = 1:num_samples
            distances = sum((data(i, :) - cluster_centers) .^ 2, 2);
            [dummy, closest_cluster] = min(distances);
            cluster_assignments(i) = closest_cluster;
        end
        
        % 更新聚类中心的位置
        for j = 1:num_clusters
            cluster_indices = (cluster_assignments == j);
            if any(cluster_indices)
                cluster_centers(j, :) = mean(data(cluster_indices, :), 1);
            end
        end
        
        % 计算能量
        energy_new = sum(distances);
        if energy_new < energy
            energy = energy_new;
        else
            % 如果能量增加,则提前终止迭代
            break;
        end
    end
end这个简化版本的函数实现了LEACH聚类算法的核心步骤,包括初始化聚类中心、迭代更新聚类赋值和聚类中心,并提供了能量计算来检测算法是否提前终止迭代。这个示例展示了如何在MATLAB中实现一个简单的聚类算法,并且可以作为进一步开发和应用聚类算法的起点。
评论已关闭