2024-09-02

Redis主从复制是一种可以让从服务器(replica)从主服务器(master)上复制数据的技术。

以下是一个基本的Redis主从复制的配置步骤:

  1. 在主服务器的redis.conf文件中,确保以下配置项被设置:



bind 0.0.0.0
port 6379
  1. 在从服务器的redis.conf文件中,确保以下配置项被设置:



bind 0.0.0.0
port 6380
  1. 在从服务器的redis.conf文件中,使用slaveof指令指定主服务器的IP和端口:



slaveof <master-ip> <master-port>

例如,如果主服务器的IP是192.168.1.100,端口是6379,从服务器的配置应该是:




slaveof 192.168.1.100 6379
  1. 启动主服务器和从服务器的Redis实例。

一旦配置完成并启动了Redis实例,主从复制将自动开始。从服务器会连接到主服务器,并开始接收来自主服务器的数据更新。

注意:在生产环境中,为了数据安全,建议设置密码验证来保护Redis实例,同时也可以考虑使用更复杂的配置,例如哨兵模式(Sentinel)或者集群模式(Cluster)来提供高可用性和数据分布。

2024-09-02

在Spring中配置Redis集群,你可以使用RedisClusterConfiguration类来设置集群的节点和其他属性。以下是一个配置Redis集群的示例:




import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisClusterConfiguration;
import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
 
import java.util.HashSet;
import java.util.Set;
 
@Configuration
public class RedisClusterConfig {
 
    @Bean
    public LettuceConnectionFactory redisConnectionFactory() {
        RedisClusterConfiguration clusterConfig = new RedisClusterConfiguration();
        clusterConfig.setClusterNodes(new HashSet<>(Set.of(
                new RedisNode("127.0.0.1", 7000),
                new RedisNode("127.0.0.1", 7001),
                new RedisNode("127.0.0.1", 7002))));
        clusterConfig.setMaxRedirects(3);
 
        return new LettuceConnectionFactory(clusterConfig);
    }
 
    @Bean
    public RedisTemplate<String, Object> redisTemplate() {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(redisConnectionFactory());
        return template;
    }
}

在这个配置中,我们定义了一个RedisClusterConfiguration实例,并通过setClusterNodes方法设置了集群节点的信息。RedisNodeRedisClusterConfiguration中的一个内部类,代表单个节点。Set.of是Java 9及以上版本的新特性,用于创建不可变集合。

maxRedirects属性设置了在集群环境中执行命令时,如果因为节点迁移导向新节点的最大重定向次数。

redisConnectionFactory方法返回一个LettuceConnectionFactory实例,它使用了我们配置好的集群配置。

redisTemplate方法返回一个RedisTemplate实例,它使用了刚才定义的LettuceConnectionFactory。这个模板可以用来操作Redis集群。

2024-09-02

Ollama是一个开源的区块链数据平台,它提供了一种方法来查询和分析区块链数据。为了在Linux上搭建Ollama环境并编译其代码,你需要按照以下步骤操作:

  1. 克隆Ollama的代码仓库:



git clone https://github.com/ollama-org/ollama.git
  1. 安装依赖项:



cd ollama
./scripts/install_deps.sh
  1. 编译Ollama:



cargo build --release
  1. 运行Ollama:



./target/release/ollama

关于测试qwen大模型,你需要准备相应的数据集和模型配置,并通过Ollama提供的CLI工具或API进行测试。

如果你想要在本地快速运行,可以考虑减少工作线程的数量,例如:




./target/release/ollama --workers 4

以上步骤假设你已经在你的Linux系统上安装了Rust编译器cargo和Git版本控制工具。如果你遇到任何编译或者运行时的问题,请确保所有依赖项都已正确安装,并查看Ollama的文档以获取更多的配置和故障排除信息。

2024-09-02

Tomcat本身不提供缓存解决方案,缓存通常由应用程序逻辑处理。在Web应用中,缓存可能用于提高性能,但同时需要确保缓存数据和数据库的一致性。以下是一些常用的方法来保持缓存和数据库之间的一致性:

  1. 读写分离:确保只有一个实例可以修改数据库状态,其他实例可以从缓存或数据库读取数据。
  2. 缓存过期:当数据发生更新时,使缓存数据过期。下一次请求将从数据库重新加载数据。
  3. 事务式缓存管理:在数据库事务中更新数据库和缓存。如果事务失败,缓存和数据库状态保持不变。
  4. 消息队列:通过消息队列来同步缓存和数据库的更新。在数据库更新后,发送消息到队列,缓存在接收到消息后更新。
  5. 乐观锁:使用乐观锁或版本控制来处理缓存和数据库的不一致。
  6. 强制一致性:在某些关键或重要的操作上,可以选择禁用缓存,直接从数据库中读取最新数据。

以下是一个简化的伪代码示例,展示了使用事务来保证缓存和数据库的一致性:




public void updateData(String key, Object newValue) {
    // 事务开始
    cache.beginTransaction();
    try {
        // 更新数据库
        db.update(key, newValue);
        // 更新缓存
        cache.put(key, newValue);
        // 提交事务
        cache.commitTransaction();
    } catch (Exception e) {
        // 事务回滚
        cache.rollbackTransaction();
        throw e;
    }
}
 
public Object getData(String key) {
    Object value = cache.get(key);
    if (value == null) {
        // 缓存未命中,从数据库加载
        value = db.get(key);
        // 将数据库的值加入到缓存中
        cache.put(key, value);
    }
    return value;
}

在实际应用中,还需要考虑缓存的缓存策略、数据的存储方式、事务管理策略等多个因素。

2024-09-02

在Spring Cloud中,多数据中心的支持通常涉及两种场景:同步数据至多个数据中心或者跨数据中心的服务调用。以下是一个简化的例子,展示如何使用Spring Cloud实现数据中心的配置。

  1. 配置多个数据中心的配置服务器(Spring Cloud Config Server):



spring:
  cloud:
    config:
      server:
        git:
          uri: https://github.com/your-repo/config-repo
          username: your-username
          password: your-password
          cloneOnStart: true
 
# 如果有多个数据中心,可以添加更多的profile
---
spring:
  profiles: datacenter-1
  cloud:
    config:
      server:
        git:
          uri: https://github.com/your-repo/config-repo
 
---
spring:
  profiles: datacenter-2
  cloud:
    config:
      server:
        git:
          uri: https://github.com/your-repo-in-datacenter-2/config-repo
  1. 配置客户端从对应的数据中心拉取配置(Spring Cloud Config Client):



spring:
  cloud:
    config:
      uri: http://config-server-url
      profile: default
      label: datacenter-1 # 指定数据中心
  1. 服务发现和负载均衡(Spring Cloud Netflix Eureka):



eureka:
  instance:
    prefer-ip-address: true
  client:
    service-url:
      defaultZone: http://eureka-server-url/eureka/ # 数据中心1的Eureka服务器地址

如果要跨数据中心调用服务,可以使用Spring Cloud Netflix Ribbon进行负载均衡:




@Autowired
private LoadBalancerClient loadBalancerClient;
 
public String callService() {
    ServiceInstance serviceInstance = loadBalancerClient.choose("SERVICE-ID");
    String serviceUrl = String.format("http://%s:%s", serviceInstance.getHost(), serviceInstance.getPort());
    // 使用RestTemplate调用服务
    RestTemplate restTemplate = new RestTemplate();
    return restTemplate.getForObject(serviceUrl + "/endpoint", String.class);
}

以上代码展示了如何配置Spring Cloud应用以支持多数据中心的场景,包括配置服务器和客户端的数据中心指定,以及服务发现和负载均衡。具体实现时,可能需要结合网络配置、安全设置和负载均衡策略来确保跨数据中心的服务调用安全和高效。

2024-09-02

多级反馈队列算法(multi-level feedback queue)是一种用于缓解网络拥塞的流量控制方法。以下是该算法的基本思想和示例代码:

  1. 初始化多个队列,每个队列的发送速率是下一个队列的发送速率的两倍。
  2. 当数据包进入网络时,它被放入第一个队列。
  3. 如果第一个队列满了,数据包就进入下一级队列。
  4. 如果所有队列都满,数据包会被丢弃。

示例代码:




class MFBQ:
    def __init__(self, levels, max_sizes):
        self.levels = levels  # 队列的级别
        self.max_sizes = max_sizes  # 每个队列的最大大小
        self.queues = [[] for _ in range(levels)]  # 初始化队列列表
 
    def enqueue(self, packet, level):
        if level < self.levels and len(self.queues[level]) < self.max_sizes[level]:
            self.queues[level].append(packet)
            return True
        else:
            return self.enqueue(packet, level+1) if level+1 < self.levels else False
 
    def dequeue(self, level):
        if level < self.levels and self.queues[level]:
            return self.queues[level].pop(0)
        return None
 
# 使用示例
mfbq = MFBQ(3, [10, 20, 40])  # 3级队列,每级限制大小分别为10, 20, 40
 
# 尝试添加数据包
for i in range(50):
    packet = "Packet " + str(i)
    if mfbq.enqueue(packet, 0):
        print(f"Packet {packet} added successfully.")
    else:
        print(f"Failed to add packet {packet}.")
 
# 尝试移除数据包
for level in range(mfbq.levels):
    while mfbq.dequeue(level) is not None:
        print(f"Packet dequeued: {packet}")

这个示例代码定义了一个MFBQ类,它有两个主要方法:enqueue用于将数据包添加到适当的队列中,dequeue用于从队列中移除数据包。初始化时需要指定队列的级别和每级队列的最大大小。如果一个队列满了,数据包会自动进入下一个队列。如果所有队列都满,数据包会被丢弃。

2024-09-02

在Go语言中,数组是一个长度固定的数据类型,元素类型相同。数组可以通过以下方式进行声明和初始化:

  1. 声明并初始化一个数组:



// 声明并初始化一个长度为5的int类型数组,其中元素分别是1,2,3,4,5
array1 := [5]int{1, 2, 3, 4, 5}
  1. 使用指定索引进行初始化:



// 声明并初始化一个长度为5的int类型数组,其中索引为1和3的元素分别是2和4
array2 := [5]int{1: 2, 3: 4}
  1. 使用...自动推导数组长度:



// 声明并初始化一个int类型数组,其中元素分别是1,2,3,4,5,Go会自动计算数组长度
array3 := [...]int{1, 2, 3, 4, 5}
  1. 初始化数组为零值:



// 声明并初始化一个长度为5的int类型数组,所有元素初始化为0
array4 := [5]int{}
  1. 声明不初始化数组(零值初始化):



// 仅声明一个长度为5的int类型数组,不进行初始化,所有元素初始化为0
var array5 [5]int
  1. 声明并部分初始化数组:



// 仅声明一个长度为5的int类型数组,前三个元素初始化为1, 2, 3,其余元素初始化为0
var array6 = [5]int{1, 2, 3}

以上就是Go语言中数组的声明和初始化的一些常见方式。

2024-09-02

腾讯HunyuanDit是腾讯AI开放平台的一项智能文本创作服务,它可以生成各种类型的文本,如小说、诗歌、新闻稿等。以下是一个使用Python调用腾讯HunyuanDit的示例代码:

首先,你需要在腾讯AI开放平台上注册账号,获取API Key和Secret Key。

然后,你可以使用如下代码来调用腾讯HunyuanDit的API:




import requests
import json
 
# 你的API Key和Secret Key
API_KEY = '你的API_KEY'
SECRET_KEY = '你的SECRET_KEY'
 
# 请求头部,包括API Key和Content-Type
headers = {
    'API_KEY': API_KEY,
    'Content-Type': 'application/json'
}
 
# 请求体,包括你想要生成的文本的类型和长度等参数
data = {
    "session_id": "your_session_id",  # 你的会话ID,可以自定义
    "app_id": "your_app_id",         # 你的应用ID,可以在腾讯AI开放平台获取
    "item_name": "novel",            # 生成文本的类型,例如小说
    "num": 1,                        # 生成文本的条数
    "length": 1000                   # 生成文本的长度
}
 
# 发送POST请求到腾讯HunyuanDit的API
response = requests.post('https://api.ai.qq.com/fcgi-bin/aai/aai_makesentence', headers=headers, data=json.dumps(data))
 
# 解析返回的JSON数据
result = response.json()
 
# 打印生成的文本
print(result['data']['sentences'][0]['sentence'])

请确保替换API_KEY, SECRET_KEY, your_session_id, your_app_id为你实际的信息,并根据需要调整data中的参数。

这段代码首先构造了请求头和请求体,然后发送POST请求到腾讯HunyuanDit的API,并打印出返回的文本。

注意:实际使用时,请遵循腾讯AI开放平台的使用规则和条款,并确保你的API调用是安全和合法的。

2024-09-02

在Spring Boot项目中引入MyBatis Plus后,可以通过以下步骤进行配置和使用:

  1. pom.xml中添加MyBatis Plus的依赖:



<dependencies>
    <!-- 其他依赖... -->
 
    <!-- MyBatis Plus -->
    <dependency>
        <groupId>com.baomidou</groupId>
        <artifactId>mybatis-plus-boot-starter</artifactId>
        <version>3.x.x</version> <!-- 替换为实际版本号 -->
    </dependency>
 
    <!-- 数据库驱动,以MySQL为例 -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.x.x</version> <!-- 替换为实际版本号 -->
    </dependency>
</dependencies>
  1. application.propertiesapplication.yml中配置数据库信息:



# application.properties 示例
spring.datasource.url=jdbc:mysql://localhost:3306/your_database?useSSL=false&useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC
spring.datasource.username=root
spring.datasource.password=yourpassword
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
  1. 创建实体类对应数据库表:



import com.baomidou.mybatisplus.annotation.TableName;
 
@TableName("user")
public class User {
    private Long id;
    private String name;
    private Integer age;
    private String email;
    
    // 省略getter和setter方法...
}
  1. 创建Mapper接口:



import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import org.apache.ibatis.annotations.Mapper;
 
@Mapper
public interface UserMapper extends BaseMapper<User> {
    // MyBatis Plus会自动处理CRUD操作
}
  1. 使用MyBatis Plus提供的服务:



import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
 
@Service
public class UserService {
 
    private final UserMapper userMapper;
 
    @Autowired
    public UserService(UserMapper userMapper) {
        this.userMapper = userMapper;
    }
 
    public boolean saveUser(User user) {
        return userMapper.insert(user) > 0;
    }
 
    // 更多业务方法...
}
  1. 在Spring Boot启动类上添加@MapperScan注解,指定Mapper接口所在的包:



import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
 
@SpringBootApplication
@MapperScan("com.yourpackage.mapper")
public class YourApplication {
    public static void main(String[] args) {
        SpringApplication.run(YourApplication.class, args);
    }
}

以上步骤展示了如何在Spring Boot项目中引入MyBati

2024-09-02

Spring Cloud 是一系列框架的有序集合,用于快速构建分布式系统的技术集合。它集成了Spring Boot,提供了服务发现与注册,配置中心,负载均衡,断路器,智能路由,微代理,控制总线等操作,都是用服务网格进行连接。

五大组件分别是:

  1. 服务发现——Netflix Eureka

    Eureka 提供了服务发现的功能,它被用来在微服务系统中发现其他服务。服务端通过Eureka Server进行注册,客户端通过Eureka Server进行服务的发现和请求。

  2. 客户端负载均衡——Netflix Ribbon

    Ribbon 是一个负载均衡器,可以将多个服务实例的请求分配到不同的服务实例。

  3. 断路器——Netflix Hystrix

    Hystrix 是一个用于处理分布式系统的延迟和容错的库,可以防止系统间的级联故障,提高系统的弹性。

  4. 服务网关——Netflix Zuul

    Zuul 是一种提供路由,监控,弹性,安全等边缘服务的系统。

  5. 分布式配置——Spring Cloud Config

    Config 可以为微服务系统提供一个中心化的外部配置。

工作原理简述:

  1. 服务提供者在启动时,将自己的服务信息注册到Eureka Server。
  2. 服务消费者通过Eureka Server获取服务提供者的信息,并通过Ribbon进行调用。
  3. 服务之间通过Feign进行通信,Feign默认集成了Ribbon。
  4. 断路器Hystrix负责调用远程服务的线程池,并监控服务的状态,如果服务出现故障,则直接返回错误,不进行服务的连接。
  5. Zuul通过过滤器进行请求的路由,并可实现权限校验,请求限流等功能。
  6. 配置中心可以实现配置的动态更新。