2024-08-23

以下是一个使用Python、Selenium和Chrome驱动的微博搜索和内容抓取的示例代码。请确保你已经安装了selenium库和chromedriver,并且将其放置在系统PATH中。




from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
 
# 初始化webdriver
driver = webdriver.Chrome()
 
# 打开微博首页
driver.get('https://weibo.com/')
 
# 等待搜索框加载完成
search_input = WebDriverWait(driver, 10).until(
    EC.presence_of_element_located((By.ID, 'search_input'))
)
 
# 输入搜索关键词
search_input.send_keys('关键词')
 
# 提交搜索
search_input.send_keys(Keys.RETURN)
 
# 等待搜索结果加载完成
time.sleep(5)  # 假设加载时间为5秒,实际可能需要更长
 
# 滚动页面加载更多博文
for i in range(3):  # 假设只需要抓取3页的博文
    driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
    time.sleep(2)  # 等待加载
 
# 获取博文链接并打开
blog_links = driver.find_elements_by_css_selector('.td-02 a')
for blog_link in blog_links:
    blog_link.click()
    time.sleep(2)  # 等待博文加载
    
    # 获取博文内容
    blog_content = driver.find_element_by_css_selector('.article').text
    print(blog_content)
    
    # 返回博文列表页
    driver.execute_script("window.history.go(-1)")
    time.sleep(2)
 
# 关闭webdriver
driver.quit()

请注意,这个代码示例是为了展示如何使用Selenium和ChromeDriver来进行基本的网页操作和内容抓取。在实际应用中,你可能需要处理更多的细节,例如处理用户登录、处理无限滚动加载的博文、处理分页、处理反爬虫策略(如登录验证、验证码识别等)。

2024-08-23

以下是一个简单的示例,使用Python的requests和lxml库来爬取B站视频的评论。




import requests
from lxml import etree
 
def get_comments(bvid):
    # B站评论API
    api_url = f'https://api.bilibili.com/x/v2/reply?type=1&oid={bvid}&pn=1&sort=0'
    headers = {
        'User-Agent': 'your_user_agent'
    }
 
    # 发送请求
    response = requests.get(api_url, headers=headers)
    comments_data = response.json()
 
    # 提取评论内容
    comments = [comment['content']['message'] for comment in comments_data['data']['replies']]
    return comments
 
# 使用示例
bvid = 'BV12J411p7KT'  # 示例BV号
comments = get_comments(bvid)
for comment in comments:
    print(comment)

请注意,你需要替换'your\_user\_agent'为你自己的User-Agent,以避免被B站API封禁。此外,B站有反爬机制,如果频繁请求可能会被封禁IP。

由于B站的评论可能需要登录或者验证等安全措施,你可能需要添加额外的请求头信息,如cookie、Referer、csrf等,以通过B站的验证。

此代码只是一个简单的示例,实际应用中可能需要处理分页、登录验证、异常处理等复杂情况。

2024-08-23

这个问题看起来是要求提供一个基于大数据、爬虫、数据可视化、Spring Boot 和 Vue.js 的项目示例。由于这个问题的范围很广,我将提供一个简化的解决方案,主要关注后端 Spring Boot 应用程序的部分。




// 导入Spring Boot相关依赖
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.data.jpa.repository.config.EnableJpaAuditing;
 
// 其他必要的导入...
 
@SpringBootApplication
@EnableJpaAuditing
public class ManagementApplication {
 
    public static void main(String[] args) {
        SpringApplication.run(ManagementApplication.class, args);
    }
 
    // 定义一个Bean,用于连接大数据系统,这里以模拟为例
    @Bean
    public DataAnalysisService dataAnalysisService() {
        return new MockDataAnalysisService();
    }
 
    // 定义一个Bean,用于爬虫服务,这里以模拟为例
    @Bean
    public CrawlerService crawlerService() {
        return new MockCrawlerService();
    }
 
    // 其他Bean定义...
}
 
// 模拟数据分析服务
class MockDataAnalysisService implements DataAnalysisService {
    // 实现数据分析逻辑
}
 
// 模拟爬虫服务
class MockCrawlerService implements CrawlerService {
    // 实现爬虫逻辑
}
 
// 其他服务类的模拟实现...

在这个简化的例子中,我们定义了一个Spring Boot应用程序的入口点,并为大数据分析、爬虫服务等模块定义了模拟的服务Beans。在实际的应用中,你需要替换这些模拟服务以连接实际的大数据系统和爬虫逻辑。

请注意,这个代码示例不包括Vue.js前端部分,也不包括具体的大数据处理、爬虫逻辑或数据可视化组件实现。这些部分需要独立开发,并且通过API与后端Spring Boot应用程序集成。

2024-08-23

微博数据采集工具weibo-crawler使用指南如下:

  1. 安装:

    首先确保你的Python版本至少为3.6,然后通过pip安装weibo-crawler:

    
    
    
    pip install weibo-crawler
  2. 使用:

    基本用法是通过命令行运行weibo-crawler,并提供用户的微博用户名。例如,要爬取用户名为example的微博数据,可以执行:

    
    
    
    weibo-crawler example

    这将会在当前目录下创建一个名为example的文件夹,其中包含用户的微博发言数据。

  3. 高级选项:

    • 通过--db选项可以指定数据库文件路径,例如:

      
      
      
      weibo-crawler example --db path/to/database.db
    • 使用--since--until参数可以限定爬取的时间范围,例如:

      
      
      
      weibo-crawler example --since 2021-01-01 --until 2021-12-31
    • 使用--output参数可以指定输出文件的格式,例如仅保存为纯文本:

      
      
      
      weibo-crawler example --output text
    • 使用--num参数可以限制爬取的微博数量,例如只爬取最新的100条微博:

      
      
      
      weibo-crawler example --num 100

请注意,微博是一个动态的数据源,新的发言可能会不时被推送到微博上,因此建议定期更新数据。此外,微博的爬取策略和服务条款可能会发生变化,使用时请确保遵守相关法律法规和微博的使用条款。

2024-08-23

为了实现一个基于Python和爬虫的个性化书籍推荐系统,你可以使用以下步骤:

  1. 确定需求:确定你想要推荐书籍的基础上,比如根据用户的阅读历史、收藏、评分或者其他用户的行为。
  2. 数据收集:使用网络爬虫从网上收集书籍数据,比如书评、评分等。
  3. 数据处理:清洗数据,提取有效信息,比如书名、作者、出版社、评分等。
  4. 特征工程:基于用户的历史数据提取特征,比如阅读喜好、作者喜好、类型喜好等。
  5. 模型训练:使用用户的历史数据和从网上爬取的书籍数据训练模型,比如机器学习或者深度学习模型。
  6. 系统实现:将模型部署为Web应用,用户可以输入个人喜好,系统会给出推荐书籍。

以下是一个非常简化的代码示例,展示如何使用Python爬取书籍数据:




import requests
from bs4 import BeautifulSoup
 
# 书籍信息爬虫函数
def crawl_book_info(book_url):
    response = requests.get(book_url)
    soup = BeautifulSoup(response.text, 'html.parser')
    title = soup.find('h1', class_='bookTitle').get_text()
    author = soup.find('a', class_='authorName').get_text()
    rating = soup.find('span', class_='minirating').get_text()
    return {
        'title': title,
        'author': author,
        'rating': rating
    }
 
# 示例书籍URL
book_url = 'https://www.example.com/book/12345'
 
# 获取书籍信息
book_info = crawl_book_info(book_url)
print(book_info)

这个例子只是一个简单的开始,实际的系统将会更加复杂,涉及到用户个人喜好的追踪、书籍数据的处理、模型训练和部署等多个环节。

2024-08-19

以下是一个使用Scrapy爬虫框架的简单示例,用于抓取一个网站上的书籍信息。

首先,创建一个新的Scrapy项目:




scrapy startproject bookscrawler

然后,定义你的Item:




# bookscrawler/items.py
 
import scrapy
 
class BookItem(scrapy.Item):
    title = scrapy.Field()
    author = scrapy.Field()
    price = scrapy.Field()

接着,编写爬虫:




# bookscrawler/spiders/bookspider.py
 
import scrapy
from bookscrawler.items import BookItem
 
class BookSpider(scrapy.Spider):
    name = 'bookspider'
    allowed_domains = ['books.com']
    start_urls = ['http://books.com/books']
 
    def parse(self, response):
        book_selectors = response.css('.book-listing')
        for book_selector in book_selectors:
            item = BookItem()
 
            title = book_selector.css('.book-title::text').extract_first()
            author = book_selector.css('.book-author::text').extract_first()
            price = book_selector.css('.book-price::text').extract_first()
 
            item['title'] = title
            item['author'] = author
            item['price'] = price
 
            yield item
 
        next_page_url = response.css('.next-page::attr(href)').extract_first()
        if next_page_url is not None:
            yield response.follow(next_page_url, self.parse)

最后,设置管道来处理Item:




# bookscrawler/pipelines.py
 
class BookPipeline(object):
    def process_item(self, item, spider):
        with open('books.csv', 'a') as f:
            f.write("{},{},{}\n".format(item['title'].encode('utf-8'), item['author'].encode('utf-8'), item['price'].encode('utf-8')))
        return item

settings.py中启用管道:




ITEM_PIPELINES = {
    'bookscrawler.pipelines.BookPipeline': 300,
}

现在,运行爬虫:




scrapy crawl bookspider

这个简单的例子展示了如何使用Scrapy框架来创建一个爬取书籍信息的爬虫。它定义了一个Item来存储书籍数据,爬虫BookSpider用于抓取书籍列表页面,并通过管道将数据保存到CSV文件中。这个例子教会了如何组织爬虫代码,并提供了一个基本的数据抓取和存储的实践。

2024-08-19

Jsoup 是一个Java库,可用于解析HTML。HuTool 是一个Java工具类库,提供了很多实用的方法。以下是一个使用Jsoup和HuTool进行简单网页数据抓取的示例代码:




import cn.hutool.core.util.StrUtil;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;
 
import java.io.IOException;
 
public class JsoupHuToolCrawlerExample {
    public static void main(String[] args) {
        String url = "http://example.com"; // 替换为你要抓取的网页地址
        try {
            Document doc = Jsoup.connect(url).get();
            Elements elements = doc.select("div.post-content"); // 选择你要抓取的元素,这里以博客文章内容为例
            for (Element element : elements) {
                String content = element.text(); // 获取文本内容
                if (StrUtil.isNotBlank(content)) {
                    System.out.println(content);
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

这段代码使用Jsoup连接到指定的URL,并使用HuTool的StrUtil.isNotBlank方法来检查获取的文本内容是否非空。在实际应用中,你需要根据目标网页的结构来调整选择器和进一步处理抓取的数据。

2024-08-19

由于原始代码已经提供了一个很好的实例,以下是核心函数的简化版本,展示如何使用Python爬取实时微博数据并保存到CSV文件中。




import requests
import csv
 
# 微博实时热搜索接口
weibo_api = 'https://s.weibo.com/weibo/ajax_hot_data?type=realtime&Referer=https%3A%2F%2Fs.weibo.com%2Fweibo%2Fajax_hot_data%3Ftype%3Drealtime%26Referer%3Dhttps%253A%252F%252Fs.weibo.com%252Fweibo%252Fajax_hot_data%253Ftype%253Drealtime%2526Referer%253Dhttps%25253A%25252F%25252Fs.weibo.com'
 
# 发送请求
response = requests.get(weibo_api)
 
# 检查请求是否成功
if response.status_code == 200:
    # 解析JSON数据
    data = response.json()
    results = data['data']['hot_list']
 
    # 创建CSV文件并写入头部信息
    with open('weibo_data.csv', 'w', newline='', encoding='utf-8') as csvfile:
        writer = csv.writer(csvfile)
        writer.writerow(['rank', 'keyword', 'count'])
 
        # 遍历结果并写入CSV文件
        for result in results:
            writer.writerow([result['rank'], result['keyword'], result['count']])
 
    print("数据爬取成功,已保存到weibo_data.csv文件。")
else:
    print("数据爬取失败,状态码:", response.status_code)

这段代码首先定义了微博实时热搜索的API接口,然后发送GET请求并检查响应状态。如果请求成功,它会解析JSON数据,并将热搜数据写入CSV文件。这个例子展示了如何使用Python进行简单的网络爬取,并对数据进行存储,为进一步的分析和可视化做准备。

2024-08-19



import requests
import json
import pandas as pd
from wordcloud import WordCloud
import matplotlib.pyplot as plt
 
# 请求API获取评论数据
def get_comments(video_id, offset=0, limit=20):
    url = f'https://api.bilibili.com/x/v2/reply/main?oid={video_id}&type=1&pn={offset//20+1}&ps={limit}'
    headers = {
        'User-Agent': 'Mozilla/5.0',
        'Cookie': 'LIVE_BUVID=AUTO52929463712191798; CURRENT_FNVAL=16; buvid3=AE85047F-08D8-4ECA-8E2D-67294E8673A018041infoc; rpdid=|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J|(J|)J|J
2024-08-19



import requests
 
def get_html(url):
    try:
        response = requests.get(url)
        if response.status_code == 200:
            return response.text
        else:
            return "网页无法访问"
    except requests.exceptions.RequestException:
        return "请求出错"
 
url = "http://example.com"
print(get_html(url))

这段代码使用了Python的requests库来获取指定URL的HTML内容。首先导入requests库,然后定义了一个get\_html函数,该函数接受一个URL作为参数,使用requests.get发送HTTP GET请求,然后检查响应状态码,如果是200,则返回网页内容;如果不是,则返回错误信息。使用try-except捕获可能发生的异常,如网络问题,并返回异常信息。最后,定义了一个URL变量,并调用get\_html函数,打印出获取到的内容。