import numpy as np
import torch
from torch import nn
from transformers import GPT2Model, GPT2Tokenizer
# 定义UML图生成智能体
class UMLGenAgent(nn.Module):
def __init__(self, model_name):
super(UMLGenAgent, self�).__init__()
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
self.model = GPT2Model.from_pretrained(model_name)
def forward(self, input_ids, attention_mask):
outputs = self.model(input_ids, attention_mask=attention_mask)
return outputs.last_hidden_state
# 定义环境类
class UMLEnvironment:
def __init__(self, agent_num):
self.agents = [UMLGenAgent('gpt2') for _ in range(agent_num)]
def step(self, actions):
# 假设环境有一个全局的GPT-2模型,这里直接调用模型生成UML图
batch_input_ids = torch.stack([self.tokenizer.encode(act, return_tensors='pt') for act in actions])
batch_attention_mask = batch_input_ids.ne(0).float()
last_hidden_states = torch.stack([agent(batch_input_ids, batch_attention_mask) for agent in self.agents])
return last_hidden_states # 这里返回的是每个agent的最后隐藏状态
# 模拟环境中多智能体并行执行动作
env = UMLEnvironment(agent_num=4)
actions = ['class A:', 'class B:', 'class C:', 'class D:']
last_hidden_states = env.step(actions)
# 输出每个智能体的最后隐藏状态
print(last_hidden_states)
这个代码示例展示了如何定义一个环境类和一个UML图生成的智能体类,并在环境类中模拟多个智能体并行执行动作(即输入自然语言指令)并获取其隐藏状态输出。这个过程是AIGC系统中的一个关键步骤,它允许多个智能体协作生成复杂的输出结果。