2024-09-02

跳跃表(Skiplist)是一种可以替代平衡树的数据结构,它允许快速的插入、删除、查找操作,所有操作的平均时间复杂度都是O(logN)。在Redis中,跳跃表被广泛应用于有序集合数据类型(Sorted Set)的底层实现。

以下是一个简单的C语言实现,演示如何创建和使用一个跳跃表节点和跳跃表结构:




#include <stdio.h>
#include <stdlib.h>
 
typedef struct skiplistNode {
    int key;
    struct skiplistNode *backward;
    struct skiplistNode *next[];
} skiplistNode;
 
typedef struct skiplist {
    skiplistNode *header, *tail;
    int level;
} skiplist;
 
// 创建一个带有特定层数的新节点
skiplistNode *createNode(int key, int level) {
    skiplistNode *node = malloc(sizeof(skiplistNode) + level * sizeof(skiplistNode*));
    node->key = key;
    node->backward = NULL;
    for (int i = 0; i < level; i++) {
        node->next[i] = NULL;
    }
    return node;
}
 
// 初始化一个空的跳跃表
skiplist *initSkipList() {
    skiplist *list = malloc(sizeof(skiplist));
    list->header = createNode(0, 32); // 假设最大层数为32
    list->tail = NULL;
    list->level = 0;
    return list;
}
 
// 插入一个新的节点
void insert(skiplist *list, int key) {
    skiplistNode *update[32];
    skiplistNode *node = list->header;
    int level = list->level;
 
    for (int i = level; i >= 0; i--) {
        while (node->next[i] && node->next[i]->key < key) {
            node = node->next[i];
        }
        update[i] = node;
    }
 
    if (node->next[0] && node->next[0]->key == key) {
        // 键值已存在,不做操作
    } else {
        int newLevel = rand() % 32; // 假设随机函数返回值的范围用于决定新节点的层数
        if (newLevel > level) {
            for (int i = level + 1; i <= newLevel; i++) {
                update[i] = list->header;
            }
            level = newLevel;
        }
 
        skiplistNode *newNode = createNode(key, newLevel);
        for (int i = 0; i < newLevel; i++) {
            newNode->next[i] = update[i]->next[i];
            update[i]->next[i] = newNode;
 
            if (update[i] == list->tail) {
                list->tail = newNode;
            }
        }
 
        if (level > list->level) {
            list->level = level;
        }
    }
}
 
// 查找一个节点
skiplistNode *search(skiplist *list, int key) {
    skiplistNode *node = list->header;
    for (int i = list->level; i >= 0; i--) {
        while (node->next[i] && node->next[i]->key < key) {
            node = node->next[i];
        }
    }
    if (node->next[0] && node->next[0]->key == key) {
        return node->next[0];
    }
    return NULL;
}
 
// 删除一个节点
void deleteNo
2024-09-02

跳跃表(skiplist)是Redis中的一种数据结构,它允许快速的插入、删除、查找操作,在实现上是一种可以替代平衡树的数据结构,在查询速度上有可比的优势。

以下是一个简单的C语言实现的跳跃表节点和跳跃表结构的示例代码:




#include <stdlib.h>
 
// 跳跃表节点结构体
typedef struct skiplistNode {
    int key;
    struct skiplistNode *backward;
    struct skiplistNode *next[];
} skiplistNode;
 
// 跳跃表结构体
typedef struct skiplist {
    skiplistNode *header;
    int level;
} skiplist;
 
// 创建一个新的跳跃表节点
skiplistNode *createNode(int key, int level) {
    skiplistNode *node = malloc(sizeof(skiplistNode) + level * sizeof(skiplistNode*));
    node->key = key;
    node->backward = NULL;
    for(int i = 0; i < level; i++) {
        node->next[i] = NULL;
    }
    return node;
}
 
// 初始化一个跳跃表
skiplist *initSkipList() {
    skiplist *list = malloc(sizeof(skiplist));
    list->header = createNode(0, 32); // 假设最大层数为32
    list->header->backward = NULL;
    list->level = 0;
    return list;
}
 
// 插入一个新的节点到跳跃表
void insert(skiplist *list, int key) {
    skiplistNode *update[32];
    skiplistNode *node = list->header;
    int level = list->level;
 
    for(int i = level; i >= 0; i--) {
        while(node->next[i] && node->next[i]->key < key) {
            node = node->next[i];
        }
        update[i] = node;
    }
 
    if(node->next[0] && node->next[0]->key == key) {
        // 如果键值已存在,不做操作
    } else {
        int newLevel = randomLevel(); // 假设randomLevel函数用于生成新节点的层数
        if(newLevel > level) {
            for(int i = level + 1; i <= newLevel; i++) {
                update[i] = list->header;
            }
            level = newLevel;
        }
 
        skiplistNode *newNode = createNode(key, newLevel);
        for(int i = 0; i < newLevel; i++) {
            newNode->next[i] = update[i]->next[i];
            update[i]->next[i] = newNode;
 
            newNode->backward = update[i];
            if(newNode->next[i]) {
                newNode->next[i]->backward = newNode;
            }
        }
 
        if(level > list->level) {
            list->level = level;
        }
    }
}
 
// 查找一个节点
skiplistNode *search(skiplist *list, int key) {
    skiplistNode *node = list->header;
 
2024-09-02

跳表(skiplist)是一种可以替代平衡树的数据结构,它允许快速的插入、删除、查找操作,所有操作的平均时间复杂度都是O(logN)。

Redis中的跳表用于有序集合数据类型(Sorted Set)的实现。

以下是一个简单的C语言实现的跳表节点和跳表结构的示例:




#include <stdlib.h>
 
// 跳表节点结构体
typedef struct skiplistNode {
    double key;         // 键值
    void *value;        // 值
    struct skiplistNode *backward;  // 后退指针
    struct skiplistLevel {
        struct skiplistNode *forward;  // 前进指针
        unsigned int span;             // 跳跃的长度
    } level[];
} skiplistNode;
 
// 跳表结构体
typedef struct skiplist {
    struct skiplistNode *header, *tail;  // 头尾节点指针
    unsigned long length;               // 节点数量
    int level;                          // 最大层数
} skiplist;
 
// 创建一个跳表节点
skiplistNode *createNode(int level, double key, void *value) {
    skiplistNode *node = malloc(sizeof(skiplistNode) + level * sizeof(skiplistNode));
    node->key = key;
    node->value = value;
    return node;
}
 
// 初始化一个跳表
skiplist *initSkipList() {
    int level = 1;  // 起始层数
    skiplistNode *node = createNode(level, 0, NULL); // 创建头节点
    skiplist *list = malloc(sizeof(skiplist));
    list->header = list->tail = node;
    list->length = 0;
    list->level = level;
    return list;
}
 
// 插入操作示例
void insert(skiplist *list, double key, void *value) {
    skiplistNode *update[64], *node;
    int i, level;
 
    // 找到所有层次的更新节点,同时确保node为空
    node = list->header;
    for (i = list->level - 1; i >= 0; i--) {
        while (node->level[i].forward && node->level[i].forward->key < key) {
            node = node->level[i].forward;
        }
        update[i] = node;
    }
 
    // 随机生成层数
    level = randomLevel();  // 实现随机层数的函数
    if (level > list->level) {
        for (i = list->level; i < level; i++) {
            update[i] = list->header;
        }
        list->level = level;
    }
 
    // 创建新节点
    node = createNode(level, key, value);
 
    // 将新节点链接到跳表
    for (i = 0; i < level; i++) {
        node->level[i].forward = update[i]->level[i].forward;
        update[i]->level[i].forward = node;
 
        // 更新前后节点指针
        if (node->level[i].forward) {
            node->level[i].span = node->level[i].forward->level[i].span - (node->key > node->level[i].forward->key);
        } else {
            node->level[i].span = list->length - (update[i] == list->header);
        }
        if (update[i] == list->header) {
            list->header->level[i].span = list->length + 1;
        } else {
            up
2024-08-27

跳跃表(skiplist)是一种可以替代平衡树的数据结构,它允许快速的插入、删除、查找操作,所有操作的平均时间复杂度都是O(logN)。在Redis中,ZSet的底层实现就是跳跃表。

跳跃表的主要特点是:

  • 每个节点不仅包含一个指向下一个节点的指针,还可能包含多个指向后续节点的指针,称为“层”(level)。
  • 节点在层中的分布不是连续的,而是通过指针的链式操作来实现。
  • 查找、插入、删除操作可以在对数平均时间内完成。

下面是一个简单的C语言实现的跳跃表节点和跳跃表结构的示例代码:




#include <stdlib.h>
 
// 跳跃表节点结构体
typedef struct skiplistNode {
    int key;
    struct skiplistNode *backward;
    struct skiplistNode *down;
    struct skiplistNode *next[];
} skiplistNode;
 
// 跳跃表结构体
typedef struct skiplist {
    skiplistNode *header, *tail;
    int level;
} skiplist;
 
// 初始化一个跳跃表
skiplist *skiplistCreate(void) {
    int i;
    skiplist *sl = malloc(sizeof(*sl));
    sl->header = malloc(sizeof(*sl->header));
    sl->header->backward = NULL;
    sl->header->down = NULL;
    for (i = 0; i < SKIPLIST_MAXLEVEL; i++) {
        sl->header->next[i] = NULL;
    }
    sl->tail = NULL;
    sl->level = 1;
    return sl;
}
 
// 插入一个节点
void skiplistInsert(skiplist *sl, int key) {
    skiplistNode *update[SKIPLIST_MAXLEVEL], *x;
    int i;
    // 分配一个新节点
    x = malloc(sizeof(*x));
    x->key = key;
    // 生成一个随机层数
    int level = random() % SKIPLIST_MAXLEVEL;
    x->backward = NULL;
    x->down = NULL;
    for (i = 0; i < level; i++) {
        x->next[i] = NULL;
    }
    // 找到每层插入位置的前驱节点
    for (i = 0; i < level; i++) {
        update[i] = sl->header;
        while (update[i]->next[i] && update[i]->next[i]->key < key) {
            update[i] = update[i]->next[i];
        }
    }
    // 建立前后节点的链接关系
    for (i = 0; i < level; i++) {
        x->next[i] = update[i]->next[i];
        update[i]->next[i] = x;
 
        // 如果有下一层,则建立向下的指针
        if (x->next[i]) {
            x->next[i]->backward = x;
        }
    }
    // 更新头部和尾部指针
    if (sl->level < level) {
        sl->level = level;
    }
    if (x->next[0]) {
        x->backward = x->next[0];
        x->next[0]->backward = x;
    }
    sl->tail = x;
}
 
// 查找一个节点
skiplistNode *skiplistSearch(skiplist *sl, int key) {
    skiplistNode *x = sl->header;
    for (int i = sl->level - 1; i >= 0; i--) {
        while (x->next[i] && x->next[i