import pandas as pd
import matplotlib.pyplot as plt
from pyecharts.charts import Bar, Line
from pyecharts import options as opts
# 假设dataframe已经包含抖音短视频数据
df = pd.read_csv('douyin_data.csv')
# 分析短视频播放次数与点赞数
plays = df['play_count']
likes = df['digg_count']
# 播放次数直方图
plays_hist = Bar(init_opts=opts.InitOpts(theme='white'))
plays_hist.add_xaxis(list(plays))
plays_hist.add_yaxis('播放次数直方图', plays.value_counts().index.tolist(), plays.value_counts().values.tolist())
# 点赞数直方图
likes_hist = Bar(init_opts=opts.InitOpts(theme='white'))
likes_hist.add_xaxis(list(likes))
likes_hist.add_yaxis('点赞数直方图', likes.value_counts().index.tolist(), likes.value_counts().values.tolist())
# 播放次数与点赞数散点图
scatter_plot = plt.scatter(plays, likes)
plt.xlabel('播放次数')
pll.ylabel('点赞数')
# 显示结果
plays_hist.render('plays_histogram.html')
likes_hist.render('likes_histogram.html')
plt.show()
这段代码首先导入了必要的库,并假设你已经有了一个包含抖音短视频数据的dataframe。然后,它使用直方图和散点图分析了短视频的播放次数和点赞数,并使用pyecharts生成了可视化图表。最后,它显示了这些图表。这个例子展示了如何将数据分析和可视化结合起来,为抖音短视频数据提供了一个更深入的洞察。