2024-08-19



package main
 
import (
    "fmt"
    "github.com/saintfish/chardet"
    "io/ioutil"
    "net/http"
)
 
func main() {
    // 使用chardet库来检测字符编码
    res, err := http.Get("http://example.com")
    if err != nil {
        panic(err)
    }
    defer res.Body.Close()
    body, err := ioutil.ReadAll(res.Body)
    if err != nil {
        panic(err)
    }
    detector := chardet.NewTextDetector()
    charset, confidence, err := detector.DetectBest(body)
    if err != nil {
        panic(err)
    }
    fmt.Printf("Charset: %s, Confidence: %f\n", charset, confidence)
}

这段代码演示了如何使用chardet库来检测从网页下载的内容的字符编码,并输出检测结果。在实际的爬虫系统中,这是一个非常有用的工具,因为不同的网站可能使用不同的编码,我们需要正确地解码内容。

2024-08-17

RabbitMQ是一个开源的消息代理和队列服务器,用于通过整个企业和应用程序之间发送消息。以下是一些RabbitMQ的基本概念和操作:

  1. 安装和配置RabbitMQ



# 在Ubuntu系统上安装RabbitMQ
sudo apt-get update
sudo apt-get install rabbitmq-server
 
# 启动RabbitMQ管理插件
sudo rabbitmq-plugins enable rabbitmq_management
 
# 添加用户
sudo rabbitmqctl add_user admin StrongPassword
 
# 设置用户角色
sudo rabbitmqctl set_user_tags admin administrator
 
# 设置用户权限
sudo rabbitmqctl set_permissions -p / admin ".*" ".*" ".*"
 
# 查看所有的队列
sudo rabbitmqctl list_queues
  1. 创建和管理RabbitMQ队列



import pika
 
# 连接到RabbitMQ服务器
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()
 
# 声明一个队列
channel.queue_declare(queue='hello')
 
# 发送消息到队列
channel.basic_publish(exchange='',
                      routing_key='hello',
                      body='Hello World!')
 
print(" [x] Sent 'Hello World!'")
 
# 关闭连接
connection.close()
  1. 接收RabbitMQ队列的消息



import pika
 
# 连接到RabbitMQ服务器
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()
 
# 声明队列
channel.queue_declare(queue='hello')
 
def callback(ch, method, properties, body):
    print(f" [x] Received {body}")
 
# 接收消息
channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True)
 
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

以上代码提供了RabbitMQ的基本安装、连接、创建队列、发送消息、接收消息的操作,是RabbitMQ实战的基础。在实际应用中,你可能需要根据具体需求进行高级配置,如虚拟主机、消息确认、消息持久化等。

2024-08-17



package main
 
import (
    "context"
    "fmt"
    "github.com/Shopify/sarama"
    "github.com/bsm/sarama-cluster"
    "log"
    "os"
    "os/signal"
    "sync"
    "syscall"
    "time"
)
 
// 初始化Kafka消费者
func NewKafkaConsumer(brokers []string, groupID string, topics []string) (sarama.ConsumerGroup, error) {
    config := cluster.NewConfig()
    config.Consumer.Return.Errors = true
    config.Group.Return.Notifications = true
 
    // 创建消费者实例
    consumer, err := cluster.NewConsumer(brokers, groupID, topics, config)
    if err != nil {
        return nil, err
    }
 
    return consumer, nil
}
 
func main() {
    brokers := []string{"localhost:9092"} // Kafka 集群地址
    groupID := "my-group"                // 消费者组ID
    topics := []string{"my-topic"}       // 需要消费的主题
 
    // 初始化Kafka消费者
    consumer, err := NewKafkaConsumer(brokers, groupID, topics)
    if err != nil {
        log.Fatalf("Failed to start consumer: %s", err)
    }
    defer func() {
        err := consumer.Close()
        if err != nil {
            log.Printf("Failed to close consumer: %s", err)
        }
    }()
 
    // 监听操作系统信号
    signals := make(chan os.Signal, 1)
    signal.Notify(signals, syscall.SIGINT, syscall.SIGTERM)
 
    // 消费者处理逻辑
    wg := &sync.WaitGroup{}
    wg.Add(1)
    go func() {
        defer wg.Done()
        for {
            select {
            case msg, ok := <-consumer.Messages():
                if !ok {
                    log.Println("Consumer closed.")
                    return
                }
                fmt.Printf("Message topic: %s, partition: %d, offset: %d, key: %s, value: %s\n",
                    msg.Topic, msg.Partition, msg.Offset, string(msg.Key), string(msg.Value))
            case err := <-consumer.Errors():
                log.Printf("Error: %s\n", err)
            case ntf := <-consumer.Notifications():
                log.Printf("Rebalanced: %+v\n", ntf)
            case <-signals:
                log.Println("Received shutdown signal, exiting...")
                return
            }
        }
    }()
 
    wg.Wait()
}

这段代码演示了如何在Go语言中使用sarama库创建一个简单的Kafka消费者,并监听特定的主题。它使用了sarama-cluster库来简化消费者的使用,并处理了操作系统的信号以优雅地关闭消费者。这是分布式系统中常见的Kafka消费者模式,对于学习分布式消息队列和Go语言的开发者来说,具有很好的教育价值。

2024-08-17

在分析"9\_企业架构队列缓存中间件分布式Redis"时,我们可以假设这是一个关于如何在企业应用中实施消息队列和缓存机制,同时使用Redis作为分布式缓存的技术选型。以下是一个简化的代码示例,展示如何在Java环境中使用Redis作为消息队列和缓存系统。




import redis.clients.jedis.Jedis;
import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
 
public class EnterpriseArchitecture {
 
    // 初始化Redis客户端
    private Jedis jedis = new Jedis("localhost");
 
    // 使用Guava Cache作为本地缓存
    private LoadingCache<String, String> cache = CacheBuilder.newBuilder()
        .maximumSize(1000)
        .build(new CacheLoader<String, String>() {
            @Override
            public String load(String key) throws Exception {
                return jedis.get(key);
            }
        });
 
    // 使用Redis的列表结构作为队列
    public void enqueue(String queueKey, String value) {
        jedis.lpush(queueKey, value);
    }
 
    // 从队列中取出数据
    public String dequeue(String queueKey) {
        return jedis.rpop(queueKey);
    }
 
    // 缓存数据
    public void cacheData(String key, String value) {
        jedis.set(key, value);
        cache.put(key, value); // 同时更新Guava缓存
    }
 
    // 从缓存中获取数据
    public String getCachedData(String key) {
        return cache.getUnchecked(key);
    }
 
    public static void main(String[] args) {
        EnterpriseArchitecture ea = new EnterpriseArchitecture();
 
        // 使用队列
        ea.enqueue("my-queue", "message1");
        System.out.println(ea.dequeue("my-queue"));
 
        // 使用缓存
        ea.cacheData("my-key", "my-value");
        System.out.println(ea.getCachedData("my-key"));
    }
}

这个示例展示了如何使用Redis作为消息队列和缓存的简单实现。enqueue方法用于将数据放入队列,dequeue方法用于从队列中取出数据。缓存操作使用了Guava Cache,并且在更新Redis时同步更新Guava缓存。这个例子提供了一个基本框架,展示了如何将Redis集成到企业应用中。

2024-08-17



package main
 
import (
    "fmt"
    "github.com/PuerkitoBio/goquery"
    "log"
    "net/http"
)
 
// 定义一个简单的HTTP GET函数
func HttpGet(url string) (string, error) {
    resp, err := http.Get(url)
    if err != nil {
        return "", err
    }
    if resp.StatusCode != 200 {
        return "", fmt.Errorf("status code error: %d %s", resp.StatusCode, resp.Status)
    }
    return "", nil
}
 
// 使用goquery解析HTML并提取信息
func ParseHtmlWithGoQuery(url string) (string, error) {
    // 获取HTML文档
    doc, err := goquery.NewDocument(url)
    if err != nil {
        log.Fatal(err)
    }
    // 查询并打印每个<h1>标签的内容
    doc.Find("h1").Each(func(i int, s *goquery.Selection) {
        fmt.Printf("h1: %s\n", s.Text())
    })
    return "", nil
}
 
func main() {
    url := "https://www.example.com"
    // 调用封装好的HTTP GET函数
    if _, err := HttpGet(url); err != nil {
        log.Fatal(err)
    }
    // 调用使用goquery解析HTML的函数
    if _, err := ParseHtmlWithGoQuery(url); err != nil {
        log.Fatal(err)
    }
}

这个示例代码展示了如何封装HTTP GET请求和使用goquery解析HTML的过程,并在main函数中调用这些封装好的函数。这种封装可以让代码更加模块化和易于维护。

2024-08-17



# 设置Docker环境变量
export DOCKER_IP=你的Docker机器IP
export REMOTE_HOSTS=$DOCKER_IP:1099
 
# 启动JMeter容器
docker run -d --name jmeter-server -e SERVER_PORT=1099 -p 1099-1099 jmeter-server
 
# 运行压测
docker exec -t jmeter-load-generator /opt/apache-jmeter-5.4/bin/jmeter -n -t /load-test.jmx -R $REMOTE_HOSTS -l /tmp/result.jtl
 
# 获取压测结果
docker cp jmeter-server:/tmp/result.jtl ./result.jtl

这个例子展示了如何在Docker环境中设置JMeter容器作为服务器,并使用一个简单的压测脚本load-test.jmx来进行分布式测试。压测结果将被保存并复制到本地。这是一个标准的压测流程,适合于需要快速配置和执行分布式性能测试的开发者。

2024-08-17



package main
 
import (
    "fmt"
    "github.com/huichen/wukong/types"
)
 
// 创建一个简单的查询结果
func createSimpleQueryResult() *types.QueryResult {
    queryResult := types.QueryResult{
        RequestId: "1234567890",
        Docs: []types.DocumentIndex{
            {
                DocId: "doc1",
                Doc:   "这是第一个文档的内容",
                Meta: map[string]string{
                    "title": "文档1",
                },
            },
            {
                DocId: "doc2",
                Doc:   "这是第二个文档的内容",
                Meta: map[string]string{
                    "title": "文档2",
                },
            },
        },
    }
    return &queryResult
}
 
func main() {
    queryResult := createSimpleQueryResult()
    fmt.Printf("查询结果: %+v\n", queryResult)
}

这段代码首先定义了一个函数createSimpleQueryResult,它创建并初始化了一个types.QueryResult结构体实例,并填充了模拟数据。然后在main函数中调用这个函数,并打印出查询结果。这个例子展示了如何在Go语言中创建和使用一个分布式搜索引擎查询结果对象。

2024-08-17

Segment路由器通过使用VXLAN技术实现跨数据中心的网络互联,以下是一个简化的示例代码,演示如何配置Segment路由器:




# 设置VXLAN网络标识符(VNI)
vxlan vni 10000
 
# 配置接口IP地址
interface eth0/0/0
 ip address 192.168.1.1 255.255.255.0
 
# 启用VXLAN接口并指定源IP地址和VXLAN网络标识符
interface eth0/0/0.10000 mode vxlan
 vxlan vni 10000
 source 192.168.1.1
 destination 192.168.2.2
 
# 配置目的数据中心的VXLAN隧道端点IP地址
interface eth0/0/0.10000 remote 192.168.2.2 tos 255
 
# 应用策略路由,避免环路
ip route-static 192.168.2.0 255.255.255.0 eth0/0/0.10000 track 1
 
# 配置BGP路由协议
bgp 10000
 peer 192.168.2.2 as-number 10000
 
# 在BGP路由协议中通告网络前缀
network 10.0.0.0

这个配置示例展示了如何在两个Segment路由器之间建立VXLAN隧道,并通过BGP协议交换路由信息。这是一个简化的配置,实际部署可能需要更多的配置细节和安全措施。

2024-08-17

Apache Storm是一个分布式实时计算系统,它被用来进行实时的流数据处理。Storm可以非常可靠地处理大量的数据,并保证每个数据都会被处理。

以下是一个简单的Storm Topology的示例代码,这个Topology从一个Spout中接收数据,并将数据发送到Bolt中进行处理。




import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
 
public class ExclamationBolt extends BaseBasicBolt {
    @Override
    public void execute(Tuple tuple, BasicOutputCollector collector) {
        String input = tuple.getString(0);
        collector.emit(new Values(input + "!"));
    }
 
    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }
}

在这个例子中,我们定义了一个名为ExclamationBolt的Bolt,它接收一个Tuple,其中包含一个字符串,然后将字符串加上感叹号,并发送一个新的Tuple。

这只是Storm中的一个简单示例,Storm可以用于更复杂的数据处理任务,包括数据分析、实时监控、持续计算等。

2024-08-17

Curator的SharedCount通常用于维护一个分布式的计数器。但是SharedCount是用于维护一段整数区间的,而不是单个整数。如果你想要维护一个分布式整数计数器,你可以使用SharedCount的一个特殊实现SharedCounter

以下是使用SharedCounter的一个简单示例:




import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.shared.SharedCounter;
import org.apache.curator.retry.ExponentialBackoffRetry;
 
public class DistributedIntegerCounter {
    private static final String ZOOKEEPER_ADDRESS = "localhost:2181";
    private static final String COUNTER_PATH = "/counter";
 
    public static void main(String[] args) throws Exception {
        CuratorFramework client = CuratorFrameworkFactory.newClient(ZOOKEEPER_ADDRESS, new ExponentialBackoffRetry(1000, 3));
        client.start();
 
        SharedCounter sharedCounter = SharedCounter.initSharedCounter(client, COUNTER_PATH);
 
        // 增加计数器
        sharedCounter.add(10);
        System.out.println("Current counter value: " + sharedCounter.getCount());
 
        // 减少计数器
        sharedCounter.subtract(3);
        System.out.println("Current counter value: " + sharedCounter.getCount());
 
        client.close();
    }
}

在这个例子中,我们首先创建了一个Curator客户端连接到ZooKeeper服务。然后,我们使用SharedCounter.initSharedCounter初始化一个分布式整数计数器。之后,我们通过add方法增加计数器的值,通过subtract方法减少计数器的值。最后,我们关闭客户端连接。

请注意,这个例子假设ZooKeeper服务运行在本地主机的2181端口。你需要根据你的ZooKeeper服务器地址进行相应的调整。