由于这是一个完整的项目,我们可以提供一些核心的代码片段或者架构设计来帮助理解。
- 用户评分计算协同过滤推荐(核心函数):
def calculate_similarity(user1_ratings, user2_ratings):
# 计算两用户的相似度
...
def get_recommendations(user_id, ratings, similarity, n=10):
# 获取推荐作品
user_ratings = ratings[user_id]
all_users = ratings.keys()
all_users.remove(user_id)
recommendations = []
for other_user in all_users:
if other_user != user_id:
sim = similarity[user_id][other_user]
if sim > 0:
for item in ratings[other_user]:
if item not in user_ratings:
recommendations.append((item, sim * user_ratings.get(item, 0)))
return sorted(recommendations, key=lambda x: -x[1])[:n]
- 后端Spring Boot控制器(简化版):
@RestController
@RequestMapping("/api/recommendation")
public class RecommendationController {
@Autowired
private RecommendationService recommendationService;
@GetMapping("/{userId}")
public ResponseEntity<?> getRecommendations(@PathVariable("userId") String userId) {
List<Item> recommendations = recommendationService.getRecommendations(userId);
return ResponseEntity.ok(recommendations);
}
}
- 前端Vue组件(用于展示推荐作品):
<template>
<div>
<div v-for="item in recommendations" :key="item.id">
{{ item.title }}
</div>
</div>
</template>
<script>
export default {
data() {
return {
recommendations: []
};
},
created() {
this.fetchRecommendations();
},
methods: {
fetchRecommendations() {
const userId = 'user123'; // 示例用户ID
this.$http.get(`/api/recommendation/${userId}`)
.then(response => {
this.recommendations = response.data;
})
.catch(error => {
console.error('Error fetching recommendations:', error);
});
}
}
};
</script>
这些代码片段提供了核心逻辑,展示了如何计算用户推荐、后端如何提供推荐服务以及前端如何展示推荐结果。实际应用中,你需要实现数据库访问、完善的业务逻辑以及错误处理等。